Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comp Cytogenet ; 15(4): 355-374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804379

RESUMO

The American dragonfly genus Orthemis Hagen, 1861 is mainly found in the Neotropical region. Seven of 28 taxonomically described species have been reported from Argentina. Chromosome studies performed on this genus showed a wide variation in chromosome number and a high frequency of the neoXY chromosomal sex-determination system, although the sexual pair was not observed in all cases. This work analyzes the spermatogenesis of Orthemisdiscolor (Burmeister, 1839), O.nodiplaga Karsch, 1891 and O.ambinigra Calvert, 1909 in individuals from the provinces of Misiones and Buenos Aires, Argentina. Orthemisdiscolor has 2n=23, n=11+X and one larger bivalent. Orthemisnodiplaga exhibits the largest chromosome number of the order, 2n=41, n=20+X and small chromosomes. Orthemisambinigra shows a reduced complement, 2n=12, n=5+neo-XY, large-sized chromosomes, and a homomorphic sex bivalent. Fusions and fragmentations are the main evolutionary mechanisms in Odonata, as well as in other organisms with holokinetic chromosomes. Orthemisnodiplaga would have originated by nine autosomal fragmentations from the ancestral karyotype of the genus (2n=22A+X in males). We argue that the diploid number 23 in Orthemis has a secondary origin from the ancestral karyotype of family Libellulidae (2n=25). The complement of O.ambinigra would have arisen from five autosomal fusions and the insertion of the X chromosome into a fused autosome. C-banding and DAPI/CMA3 staining allowed the identification of the sexual bivalent, which revealed the presence of constitutive heterochromatin. We propose that the chromosome with intermediate C-staining intensity and three medial heterochromatic regions corresponds to the neo-Y and that the neo-system of this species has an ancient evolutionary origin. Moreover, we discuss on the mechanisms involved in the karyotypic evolution of this genus, the characteristics of the neo sex-determining systems and the patterns of heterochromatin distribution, quantity and base pair richness.

2.
J Plant Res ; 131(2): 285-296, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29177755

RESUMO

The Northwestern Argentina (NWA) highland region is one of the southernmost areas of native maize cultivation. We studied variations of different cytological parameters, such as DNA contents, presence/absence of B chromosomes (Bs), and number and sequence composition of heterochromatic knobs in ten accessions of four maize landraces growing along a broad altitudinal cline in NWA. The aim of this work was to assess variations in cytological parameters and their relationship with the crop altitude of cultivation, in an adaptive context. The A-DNA content of the A chromosome complements showed 40% of difference between the lowest (4.5 pg) and the highest (6.3 pg) 2C value. This variation could be attributed to differences in number and size of heterochromatic knobs. Fluorescent in situ hybridization studies revealed the sequence composition of each knob, with a higher proportion of knobs composed of 180-bp repeats rather than TR-1 repeats, in all accessions. We also found numerical polymorphisms and the highest frequency of Bs reported in maize to this date. These results lead us to propose that the frequencies and doses of Bs are influenced by the landrace genotypical make-up. The Bs might be maintained in higher frequencies in those accessions having lower heterochromatin content, so as to preserve an optimal nucleotype. Furthermore, selective forces acting along the altitudinal gradient might be modulating the cytological parameters studied, as suggested by the significant correlations found among them.


Assuntos
Altitude , Cromossomos de Plantas/genética , DNA de Plantas/genética , Variação Genética , Zea mays/genética , Argentina , Meio Ambiente , Genótipo , Heterocromatina/química , Hibridização in Situ Fluorescente
3.
AoB Plants ; 62014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24969503

RESUMO

Evolutionary chromosome change involves significant variation in DNA amount in diploids and genome downsizing in polyploids. Genome size and karyotype parameters of Hippeastrum species with different ploidy level were analysed. In Hippeastrum, polyploid species show less DNA content per basic genome than diploid species. The rate of variation is lower at higher ploidy levels. All the species have a basic number x = 11 and bimodal karyotypes. The basic karyotypes consist of four short metacentric chromosomes and seven large chromosomes (submetacentric and subtelocentric). The bimodal karyotype is preserved maintaining the relative proportions of members of the haploid chromosome set, even in the presence of genome downsizing. The constancy of the karyotype is maintained because changes in DNA amount are proportional to the length of the whole-chromosome complement and vary independently in the long and short sets of chromosomes. This karyotype constancy in taxa of Hippeastrum with different genome size and ploidy level indicates that the distribution of extra DNA within the complement is not at random and suggests the presence of mechanisms selecting for constancy, or against changes, in karyotype morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA