RESUMO
Here, the first accurate study is presented of the room-temperature and 100â K structures of one of the first organic spin liquids, κ-(BEDT-TTF)2Ag2(CN)3. It is shown that the monoclinic structure determined previously is only the average one. It is shown that the exact structure presents triclinic symmetry with two non-equivalent dimers in the unit cell. But surprisingly this does not lead to a sizeable charge disproportionation between dimers. The difference from the analogue compound κ-(BEDT-TTF)2Cu2(CN)3 which also presents a spin liquid phase is discussed in detail. The data provided here show the importance of the anionic layer and in particular the transition metal position in the process of symmetry breaking. The possible impact of the symmetry breaking, albeit weak, on the spin-liquid mechanism and the influence of various disorders on the physical properties of this system is also discussed.
RESUMO
To rationalize how the gelation ability of a low molecular weight gelator is influenced by its molecular structure, we performed extensive solubility tests of a group of thiazole-based gelators and made use of Hansen solubility parameter formalism. We observe that the increase of a linear alkyl chain in these gelators promotes an increase of the radius of the gelation sphere as well as a gradual shift of its center to lower values of the polar (δP) and hydrogen bonding (δH) components. The molecular packing within the fibers and the crystal habit were determined by a combination of X-ray diffraction and molecular modeling. We attribute the gradual and linear shift of the gelation sphere to the fact that all of the studied gelators share the same molecular packing, so that an increasing length of the alkyl chain reduces the proportion of polar groups at the surface, resulting in a gradual increase in the contact between apolar parts of the fiber and the solvent.
RESUMO
The room-temperature structural properties of the RMn2O5 multiferroics have been investigated under pressure, using powder X-ray scattering and density functional theory (DFT) calculations. It was possible to determine the lattice parameters and the main atomic positions as a function of pressure. Good agreement was observed between the X-ray and DFT results for most of the determined crystallographic data. From the DFT calculations, it was possible to infer the pressure evolution of the exchange interactions, and this analysis led to the conclusion that the onset of the q = (½, 0, ½) magnetic structure under pressure is related to the increase in the J1 super-exchange terms (due to the reduction in the Mn-O distances) compared with the Mn-R exchange interactions. In addition, the 1D antiferromagnetic character of the compounds should be reinforced under pressure.
RESUMO
A mixed-valence conducting cation radical salt of the unsymmetrically substituted o-Me2TTF donor molecule (TTF is tetrathiafulvalene) was obtained upon electrocrystallization in the presence of the non-centrosymmetric NO3- anion. It crystallizes at room temperature in the monoclinic P21/c space group, with the anion disordered on an inversion centre. The donor molecules are stacked along the a axis. A 90° rotation of the longest molecular axis of o-Me2TTF generates a chessboard-like structure, preventing lateral Sâ¯S contacts between stacks and providing a strongly one-dimensional electronic system, as confirmed by overlap interaction energies and band structure calculations. A strong dimerization within the stacks explains the semi-conducting behaviour of the salt, with σroom temp = 3-5â Sâ cm-1 and Eactivated = 0.12-0.14â eV. An X-ray diffuse scattering survey of reciprocal space, combined with full structure resolutions at low temperatures (250, 85 and 20â K), evidenced the succession of two structural transitions: a ferroelastic one with an anion-ordering (AO) process and the establishment of a (0, ½, ½) superstructure below 124â (±3)â K, also visible via resistivity thermal dependence, followed by a stack tetramerization with the establishment of a (½, ½, ½) superstructure below 90â (±5)â K. The latter ground state is driven by a spin-Peierls (SP) instability, as demonstrated by the temperature dependence of the magnetic susceptibility. Surprisingly, these two kinds of instability appear to be fully decoupled here, at variance with other tetra-methyl-tetra-thia-fulvalene (TMTTF) or tetramethyl-tetra-selena-fulvalene (TMTSF) salts with such non-centrosymmetric counter-ions.
RESUMO
The 3d(1) system BaVS3 undergoes a series of remarkable electronic phase transitions. We show that the metal-insulator transition at T(MI)=70 K is associated with a structural transition announced by a huge regime of one-dimensional (1D) lattice fluctuations, detected up to 170 K. These 1D fluctuations correspond to a 2k(F)=c(*)/2 charge-density wave (CDW) instability of the d(z(2)) electron gas. We discuss the formation below T(MI) of an unconventional CDW state involving the condensation of the other V4+ 3d(1) electrons of the quasidegenerate e(t(2g)) orbitals. This study stresses the role of the orbital degrees of freedom in the physics of BaVS3 and reveals the inadequacy of current first principle band calculations to describe its electronic ground state.