Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(7): 669-683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979620

RESUMO

Mars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impacted by galactic cosmic rays (GCRs). In this study, we exposed a diverse set of Mars analog samples to 0.9 Megagray (MGy) of gamma radiation to mimic 15 million years of exposure on the Martian surface. We measured no significant impact of GCRs on the total organic carbon (TOC) and bulk stable C isotopes in samples with initial TOC concentration > 0.1 wt. %; however, diagnostic molecular biosignatures presented a wide range of degradation that didn't correlate to factors like mineralogy, TOC, water content, and surface area. Exposure dating suggests that the surface of Gale crater has been irradiated at more than five times our dose, yet using this relatively low dose and "best-case scenario" geologically recalcitrant biomarkers, large and variable losses were nevertheless evident. Our results empasize the importance of selecting sampling sites at depth or recently exposed at the Martian surface.


Assuntos
Biomarcadores , Argila , Radiação Cósmica , Meio Ambiente Extraterreno , Marte , Argila/química , Biomarcadores/análise , Meio Ambiente Extraterreno/química , Carbonatos/química , Carbonatos/análise , Exobiologia/métodos , Silicatos de Alumínio/química , Isótopos de Carbono/análise
2.
Environ Microbiol ; 24(12): 6164-6183, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271901

RESUMO

Physiological and gene expression studies of deep-sea bacteria under pressure conditions similar to those experienced in their natural habitat are critical for understanding growth kinetics and metabolic adaptations to in situ conditions. The Campylobacterium (aka Epsilonproteobacterium) Nautilia sp. strain PV-1 was isolated from hydrothermal fluids released from an active deep-sea hydrothermal vent at 9° N on the East Pacific Rise. Strain PV-1 is a piezophilic, moderately thermophilic, chemolithoautotrophic anaerobe that conserves energy by coupling the oxidation of hydrogen to the reduction of nitrate or elemental sulfur. Using a high-pressure-high temperature continuous culture system, we established that strain PV-1 has the shortest generation time of all known piezophilic bacteria and we investigated its protein expression pattern in response to different hydrostatic pressure regimes. Proteogenomic analyses of strain PV-1 grown at 20 and 5 MPa showed that pressure adaptation is not restricted to stress response or homeoviscous adaptation but extends to enzymes involved in central metabolic pathways. Protein synthesis, motility, transport, and energy metabolism are all affected by pressure, although to different extents. In strain PV-1, low-pressure conditions induce the synthesis of phage-related proteins and an overexpression of enzymes involved in carbon fixation.


Assuntos
Epsilonproteobacteria , Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , Epsilonproteobacteria/genética
3.
Geobiology ; 20(6): 857-869, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36081384

RESUMO

We investigated the impact of pressure on thermophilic, chemolithoautotrophic NO 3 - reducing bacteria of the phyla Campylobacterota and Aquificota isolated from deep-sea hydrothermal vents. Batch incubations at 5 and 20 MPa resulted in decreased NO 3 - consumption, lower cell concentrations, and overall slower growth in Caminibacter mediatlanticus (Campylobacterota) and Thermovibrio ammonificans (Aquificota), relative to batch incubations near standard pressure (0.2 MPa) conditions. Nitrogen isotope fractionation effects from chemolithoautotrophic NO 3 - reduction by both microorganisms were, on the contrary, maintained under all pressure conditions. Comparable chemolithoautotrophic NO 3 - reducing activities between previously reported natural hydrothermal vent fluid microbial communities dominated by Campylobacterota at 25 MPa and Campylobacterota laboratory isolates at 0.2 MPa, suggest robust similarities in cell-specific NO 3 - reduction rates and doubling times between microbial populations and communities growing maximally under similar temperature conditions. Physiological and metabolic comparisons of our results with other studies of pressure effects on anaerobic chemolithoautotrophic processes (i.e., microbial S0 -oxidation coupled to Fe(III) reduction and hydrogenotrophic methanogenesis) suggest that anaerobic chemolithoautotrophs relying on oxidation-reduction (redox) reactions that yield higher Gibbs energies experience larger shifts in cell-specific respiration rates and doubling times at increased pressures. Overall, our results advance understanding of the role of pressure, its relationship with temperature and redox conditions, and their effects on seafloor chemolithoautotrophic NO 3 - reduction and other anaerobic chemolithoautotrophic processes.


Assuntos
Compostos Férricos , Água do Mar , Pressão Hidrostática , Isótopos de Nitrogênio , Filogenia , Água do Mar/microbiologia
4.
Geobiology ; 17(5): 564-576, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31180189

RESUMO

Microbial sulfur cycling in marine sediments often occurs in environments characterized by transient chemical gradients that affect both the availability of nutrients and the activity of microbes. High turnover rates of intermediate valence sulfur compounds and the intermittent availability of oxygen in these systems greatly impact the activity of sulfur-oxidizing micro-organisms in particular. In this study, the thiosulfate-oxidizing hydrothermal vent bacterium Thiomicrospira thermophila strain EPR85 was grown in continuous culture at a range of dissolved oxygen concentrations (0.04-1.9 mM) and high pressure (5-10 MPa) in medium buffered at pH 8. Thiosulfate oxidation under these conditions produced tetrathionate, sulfate, and elemental sulfur, in contrast to previous closed-system experiments at ambient pressure during which thiosulfate was quantitatively oxidized to sulfate. The maximum observed specific growth rate at 5 MPa pressure under unlimited O2 was 0.25 hr-1 . This is comparable to the µmax (0.28 hr-1 ) observed at low pH (<6) at ambient pressure when T. thermophila produces the same mix of sulfur species. The half-saturation constant for O2 ( KO2 ) estimated from this study was 0.2 mM (at a cell density of 105 cells/ml) and was robust at all pressures tested (0.4-10 MPa), consistent with piezotolerant behavior of this strain. The cell-specific KO2 was determined to be 1.5 pmol O2 /cell. The concentrations of products formed were correlated with oxygen availability, with tetrathionate production in excess of sulfate production at all pressure conditions tested. This study provides evidence for transient sulfur storage during times when substrate concentration exceeds cell-specific KO2 and subsequent consumption when oxygen dropped below that threshold. These results may be common among sulfur oxidizers in a variety of environments (e.g., deep marine sediments to photosynthetic microbial mats).


Assuntos
Sedimentos Geológicos/química , Oxigênio/análise , Piscirickettsiaceae/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Oxirredução , Pressão , Água do Mar/microbiologia
5.
Front Microbiol ; 9: 2970, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574130

RESUMO

In this study, we integrated geochemical measurements, microbial diversity surveys and physiological characterization of laboratory strains to investigate substrate-attached filamentous microbial biofilms at Tor Caldara, a shallow-water gas vent in the Tyrrhenian Sea. At this site, the venting gases are mainly composed of CO2 and H2S and the temperature at the emissions is the same as that of the surrounding water. To investigate the composition of the total and active fraction of the Tor Caldara biofilm communities, we collected established and newly formed filaments and we sequenced the 16S rRNA genes (DNA) and the 16S rRNA transcripts (cDNA). Chemoautotrophic sulfur-oxidizing members of the Gammaproteobacteria (predominantly Thiotrichales) dominate the active fraction of the established microbial filaments, while Epsilonproteobacteria (predominantly Sulfurovum spp.) are more prevalent in the young filaments. This indicates a succession of the two communities, possibly in response to age, sulfide and oxygen concentrations. Growth experiments with representative laboratory strains in sulfide gradient medium revealed that Sulfurovum riftiae (Epsilonproteobacteria) grew closer to the sulfide source than Thiomicrospira sp. (Gammaproteobacteria, Thiotrichales). Overall, our findings show that sulfur-oxidizing Epsilonproteobacteria are the dominant pioneer colonizers of the Tor Caldara biofilm communities and that Gammaproteobacteria become prevalent once the community is established. This succession pattern appears to be driven - among other factors - by the adaptation of Epsilon- and Gammaproteobacteria to different sulfide concentrations.

6.
Int J Syst Evol Microbiol ; 66(2): 830-836, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26610851

RESUMO

A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 µm long and 0.5 µm wide. Strain MAG-PB1T grew at 30-70 °C (optimum 60 °C), 0-50 g NaCl l- 1 (optimum 15-20 g l- 1) and pH 5.5-8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( - )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T).


Assuntos
Deltaproteobacteria/classificação , Fontes Hidrotermais/microbiologia , Filogenia , Água do Mar/microbiologia , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Grécia , Ferro/metabolismo , Mar Mediterrâneo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Appl Environ Microbiol ; 81(19): 6850-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209666

RESUMO

Continuous culture under elevated pressures is an important technique for expanding the exploration of microbial growth and survival in extreme environments associated with the deep biosphere. Here we present a benchtop stirred continuous culture bioreactor capable of withstanding temperatures ranging from 25 to 120°C and pressures as high as 69 MPa. The system is configured to allow the employment of media enriched in dissolved gases, under oxic or anoxic conditions, while permitting periodic sampling of the incubated organisms with minimal physical/chemical disturbance inside the reactor. In a pilot experiment, the fermentative growth of the thermopiezophilic bacterium Marinitoga piezophila was investigated continuously for 382 h at 65°C and at pressures ranging from 0.1 to 40 MPa while the medium flow rate was varied from 2 to 0.025 ml/min. The enhanced growth observed at 30 and 40 MPa and 0.025 ml/min supports the pressure preferences of M. piezophila when grown fermentatively. This assay successfully demonstrates the capabilities of the bioreactor for continuous culturing at a variety of dilution rates, pressures, and temperatures. We anticipate that this technology will accelerate our understanding of the physiological and metabolic status of microorganisms under temperature, pressure, and energy regimes resembling those of the Earth's piezosphere.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Bactérias/química , Bactérias/metabolismo , Ecossistema , Gases/metabolismo , Temperatura Alta , Pressão
8.
Science ; 304(5673): 1002-5, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15060286

RESUMO

Fischer-Tropsch type (FTT) synthesis has long been proposed to account for the existence of hydrocarbons in hydrothermal fluids. We show that iron- and chromium-bearing minerals catalyze the abiotic formation of hydrocarbons. In addition to production of methane (CH4aq), we report abiotic generation of ethane (C2H6aq) and propane (C3H8aq) by mineral-catalyzed hydrothermal reactions at 390 degrees C and 400 bars. Results suggest that the chromium component in ultramafic rocks could be an important factor for FTT synthesis during water-rock interaction in mid-ocean ridge hydrothermal systems. This in turn could help to support microbial communities now recognized in the subsurface at deep-sea vents.


Assuntos
Cromo/química , Sedimentos Geológicos/química , Hidrocarbonetos/síntese química , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Dióxido de Carbono/química , Catálise , Compostos de Cromo/química , Ecossistema , Meio Ambiente , Etano/síntese química , Etano/química , Compostos Férricos/química , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/química , Hidrogênio/química , Concentração de Íons de Hidrogênio , Metano/síntese química , Metano/química , Pressão , Propano/síntese química , Propano/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA