RESUMO
Soil treatment units (STUs) receiving effluent from on-site wastewater treatment systems (OWTSs) rely on the gradual development of a microbial biomat/biozone at the infiltrative surface for optimal effluent distribution and pollutant attenuation. Here, we present the first direct measurement of gradual biomat development in the field in STU trenches receiving either primary (PE) or secondary treated effluent (SE) under identical environmental, hydrological and subsoil conditions. Two domestic OWTSs were constructed in Ireland and monitored over a period of >2 years using an automated, three-dimensional network of buried soil water content sensors tracking water flow and retention within the soil underneath the infiltrative surface. While trenches receiving PE expressed signs of biomat formation along the entire length of STU trenches, biomats in trenches receiving SE were significantly muted and did not extend further than 10 m from the inlet at the end of the study. The presence of a mature biomat helped to retain soil moisture above background levels and made the system more resilient towards drought events and desiccation stress but led, in one case, to effluent ponding within the trenches. A growth-limited non-linear model fit revealed that biomats in SE trenches are expected to remain considerably shorter and will not spread along the entire trench design length, even after 10 years of operation, which is contrary to prevalent design assumptions. Muted biomat growth, on the contrary, might lead to localized hydraulic and pollutant overloading and has been shown previously to negatively affect the ability to attenuate pollutants effectively within the soil profile before the effluent reaches the groundwater.
Assuntos
Solo , Purificação da Água , Irlanda , Eliminação de Resíduos Líquidos , Águas ResiduáriasRESUMO
Recent proxy measurements reveal that subglacial lakes beneath modern ice sheets periodically store and release large volumes of water, providing an important but poorly understood influence on contemporary ice dynamics and mass balance. This is because direct observations of how lake drainage initiates and proceeds are lacking. Here we present physical evidence of the mechanism and geometry of lake drainage from the discovery of relict subglacial lakes formed during the last glaciation in Canada. These palaeo-subglacial lakes comprised shallow (<10 m) lenses of water perched behind ridges orientated transverse to ice flow. We show that lakes periodically drained through channels incised into bed substrate (canals). Canals sometimes trend into eskers that represent the depositional imprint of the last high-magnitude lake outburst. The subglacial lakes and channels are preserved on top of glacial lineations, indicating long-term re-organization of the subglacial drainage system and coupling to ice flow.
RESUMO
The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front.
Assuntos
Água Subterrânea/análise , Água Subterrânea/microbiologia , Movimentos da Água , Poluentes Químicos da Água/análise , Difusão , Modelos Teóricos , OxirreduçãoRESUMO
Benzyl alcohol, a preservative commonly added to multidose therapeutic protein formulations, can accelerate aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra). To investigate the interactions between benzyl alcohol and rhIL-1ra, we used nuclear magnetic resonance to observe the effect of benzyl alcohol on the chemical shifts of amide resonances of rhIL-1ra and to measure hydrogen-deuterium exchange rates of individual rhIL-1ra residues. Addition of 0.9% benzyl alcohol caused significant chemical shifts of amide resonances for residues 90-97, suggesting that these solvent-exposed residues participate in the binding of benzyl alcohol. In contrast, little perturbation of exchange rates was observed in the presence of either sucrose or benzyl alcohol.
Assuntos
Álcool Benzílico/química , Medição da Troca de Deutério , Proteína Antagonista do Receptor de Interleucina 1/química , Conservantes Farmacêuticos/química , Tecnologia Farmacêutica/métodos , Álcool Benzílico/metabolismo , Sítios de Ligação , Química Farmacêutica , Humanos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conservantes Farmacêuticos/metabolismo , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Relação Estrutura-Atividade , TemperaturaRESUMO
Capsular polysaccharides are important factors in bacterial pathogenesis and have been the target of a number of successful vaccines. Francisella tularensis has been considered to express a capsular antigen but none has been isolated or characterized. We have developed a monoclonal antibody, 11B7, which recognizes the capsular polysaccharide of F. tularensis migrating on Western blot as a diffuse band between 100 kDa and 250 kDa. The capsule stains poorly on SDS-PAGE with silver stain but can be visualized using ProQ Emerald glycoprotein stain. The capsule appears to be highly conserved among strains of F. tularensis as antibody 11B7 bound to the capsule of 14 of 14 F. tularensis type A and B strains on Western blot. The capsular material can be isolated essentially free of LPS, is phenol and proteinase K resistant, ethanol precipitable and does not dissociate in sodium dodecyl sulfate. Immunoelectron microscopy with colloidal gold demonstrates 11B7 circumferentially staining the surface of F. tularensis which is typical of a polysaccharide capsule. Mass spectrometry, compositional analysis and NMR indicate that the capsule is composed of a polymer of the tetrasaccharide repeat, 4)-alpha-D-GalNAcAN-(1->4)-alpha-D-GalNAcAN-(1->3)-beta-D-QuiNAc-(1->2)-beta-D-Qui4NFm-(1-, which is identical to the previously described F. tularensis O-antigen subunit. This indicates that the F. tularensis capsule can be classified as an O-antigen capsular polysaccharide. Our studies indicate that F. tularensis O-antigen glycosyltransferase mutants do not make a capsule. An F. tularensis acyltransferase and an O-antigen polymerase mutant had no evidence of an O-antigen but expressed a capsular antigen. Passive immunization of BALB/c mice with 75 microg of 11B7 protected against a 150 fold lethal challenge of F. tularensis LVS. Active immunization of BALB/c mice with 10 microg of capsule showed a similar level of protection. These studies demonstrate that F. tularensis produces an O-antigen capsule that may be the basis of a future vaccine.
Assuntos
Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Francisella tularensis/imunologia , Francisella tularensis/metabolismo , Antígenos O/imunologia , Antígenos O/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Cápsulas Bacterianas/ultraestrutura , Western Blotting , Microscopia Crioeletrônica , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Francisella tularensis/ultraestrutura , Cromatografia Gasosa-Espectrometria de Massas , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Microscopia Imunoeletrônica , Antígenos O/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801-808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn-Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model.
Assuntos
Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Modelos Biológicos , Algoritmos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Colágeno/química , Colágeno/metabolismo , Simulação por Computador , Difusão , Géis/química , Géis/metabolismo , Implantes Experimentais , Vasos Linfáticos/anatomia & histologia , Camundongos , Prótons , Reologia , TermodinâmicaRESUMO
Periodic breathing is often associated with heart disease or stroke, and commonly Cheyne-Stokes breathing has a period of about a minute. Periodic breathing also commonly occurs in healthy subjects at high altitude, and here the periods may be much shorter, of the order of 15-20 s. In this paper we study such periodic breathing using the classical model of Grodins et al. (1967, J. Appl. Physiol. 22, 260-276), together with a prescription for the dependence of ventilation on the blood CO2 concentration, modulated by the reduced oxygen pressure (the 'Oxford fan'). The model focusses on the fast dynamics of the arterial blood CO2, and differs in this respect from our previous work which emphasised the brain CO2 concentration; in this sense our model is in fact a generalization of the conceptually simpler Mackey-Glass model.