Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 12: 1378637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035465

RESUMO

Objective: This study aims to determine the impact of incorporating upper threshold vital sign triggers into the digital Children's Early Warning Tool (CEWT) on the number of medical emergency team (MET) alerts. Methods: De-identified vital set data from the Cerner Millennium Integrated Electronic Medical Records were obtained for all paediatric patients aged ≤16 years at a tertiary children's hospital in Brisbane over a 12-month period in 2022. Patients in the paediatric intensive care unit, post-anaesthetic care unit, or the emergency department were excluded as they would not trigger MET alerts in these locations. Microsoft Excel scripts were used to tabulate and graph the data to compare the number of MET alerts in the current system vs. the system with proposed upper thresholds for heart rate, respiratory rate, systolic blood pressure, and severe respiratory distress. Results: A total of 389,352 vital sets were used for analysis after exclusions. Total cumulative MET alerts increased by 229% from 1,707 to 5,623. The number of increased alerts was inversely proportional to the age group. Respiratory rate and systolic blood pressure were the vital signs most associated with increased alerts. The largest number of new alerts came from patients with lower CEWT scores, while the largest proportional increase in alerts came from those with higher CEWT scores. Conclusions: Incorporating upper threshold vital sign triggers into the digital CEWT leads to a substantial increase in MET alerts. The consequent workload is not justified, given the lack of evidence suggesting a failure of the current CEWT system in recognising deteriorating patients.

2.
mBio ; 15(4): e0340323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501873

RESUMO

AB5-type toxins are a diverse family of protein toxins composed of an enzymatic active (A) subunit and a pentameric delivery (B) subunit. Salmonella enterica serovar Typhi's typhoid toxin features two A subunits, CdtB and PltA, in complex with the B subunit PltB. Recently, it was shown that S. Typhi encodes a horizontally acquired B subunit, PltC, that also assembles with PltA/CdtB to produce a second form of typhoid toxin. S. Typhi therefore produces two AB5 toxins with the same A subunits but distinct B subunits, an evolutionary twist that is unique to typhoid toxin. Here, we show that, remarkably, the Salmonella bongori species independently evolved an analogous capacity to produce two typhoid toxins with distinct B subunits. S. bongori's alternate B subunit, PltD, is evolutionarily distant from both PltB and PltC and outcompetes PltB to form the predominant toxin. We show that, surprisingly, S. bongori elicits similar levels of CdtB-mediated intoxication as S. Typhi during infection of cultured human epithelial cells. This toxicity is exclusively due to the PltB toxin, and strains lacking pltD produce increased amounts of PltB toxin and exhibit increased toxicity compared to the wild type, suggesting that the acquisition of the PltD subunit potentially made S. bongori less virulent toward humans. Collectively, this study unveils a striking example of convergent evolution that highlights the importance of the poorly understood "two-toxin" paradigm for typhoid toxin biology and, more broadly, illustrates how the flexibility of A-B interactions has fueled the evolutionary diversification and expansion of AB5-type toxins. IMPORTANCE: Typhoid toxin is an important Salmonella Typhi virulence factor and an attractive target for therapeutic interventions to combat typhoid fever. The recent discovery of a second version of this toxin has substantial implications for understanding S. Typhi pathogenesis and combating typhoid fever. In this study, we discover that a remarkably similar two-toxin paradigm evolved independently in Salmonella bongori, which strongly suggests that this is a critical aspect of typhoid toxin biology. We observe significant parallels between how the two toxins assemble and their capacity to intoxicate host cells during infection in S. Typhi and S. bongori, which provides clues to the biological significance of this unusual toxin arrangement. More broadly, AB5 toxins with diverse activities and mechanisms are essential virulence factors for numerous important bacterial pathogens. This study illustrates the capacity for novel A-B interactions to evolve and thus provides insight into how such a diverse arsenal of toxins might have emerged.


Assuntos
Toxinas Bacterianas , Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Salmonella/metabolismo , Salmonella typhi/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502064

RESUMO

Two-component regulatory systems (TCSs) are a major mechanism used by bacteria to sense and respond to their environments. Many of the same TCSs are used by biologically diverse organisms with different regulatory needs, suggesting that the functions of TCS must evolve. To explore this topic, we analysed the amino acid sequence divergence patterns of a large set of broadly conserved TCS across different branches of Enterobacteriaceae, a family of Gram-negative bacteria that includes biomedically important genera such as Salmonella, Escherichia, Klebsiella and others. Our analysis revealed trends in how TCS sequences change across different proteins or functional domains of the TCS, and across different lineages. Based on these trends, we identified individual TCS that exhibit atypical evolutionary patterns. We observed that the relative extent to which the sequence of a given TCS varies across different lineages is generally well conserved, unveiling a hierarchy of TCS sequence conservation with EnvZ/OmpR as the most conserved TCS. We provide evidence that, for the most divergent of the TCS analysed, PmrA/PmrB, different alleles were horizontally acquired by different branches of this family, and that different PmrA/PmrB sequence variants have highly divergent signal-sensing domains. Collectively, this study sheds light on how TCS evolve, and serves as a compendium for how the sequences of the TCS in this family have diverged over the course of evolution.


Assuntos
Klebsiella , Alelos , Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA