RESUMO
Kynurenine 3-monooxygenase (KMO), a key player in the kynurenine pathway (KP) of tryptophan degradation, regulates the synthesis of the neuroactive metabolites 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA). KMO activity has been implicated in several major brain diseases including Huntington's disease (HD) and schizophrenia. In the brain, KMO is widely believed to be predominantly localized in microglial cells, but verification in vivo has not been provided so far. Here, we examined KP metabolism in the brain after depleting microglial cells pharmacologically with the colony stimulating factor 1 receptor inhibitor PLX5622. Young adult mice were fed PLX5622 for 21 days and were euthanized either on the next day or after receiving normal chow for an additional 21 days. Expression of microglial marker genes was dramatically reduced on day 22 but had fully recovered by day 43. In both groups, PLX5622 treatment failed to affect Kmo expression, KMO activity or tissue levels of 3-HK and KYNA in the brain. In a parallel experiment, PLX5622 treatment also did not reduce KMO activity, 3-HK and KYNA in the brain of R6/2 mice (a model of HD with activated microglia). Finally, using freshly isolated mouse cells ex vivo, we found KMO only in microglia and neurons but not in astrocytes. Taken together, these data unexpectedly revealed that neurons contain a large proportion of functional KMO in the adult mouse brain under both physiological and pathological conditions.
RESUMO
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominant CAG-repeat expansion in the huntingtin gene. Microglial activation is a key feature of HD pathology, and is present before clinical disease onset. The kynurenine pathway (KP) of tryptophan degradation is activated in HD, and is thought to contribute to disease progression. Indoleamine-2,3-dioxygenase (IDO) catalyzes the first step in this pathway; this and other pathway enzymes reside with microglia. While HD brain microglia accumulate iron, the role of iron in promoting microglial activation and KP activity is unclear. Here we utilized the neonatal iron supplementation model to investigate the relationship between iron, microglial activation and neurodegeneration in adult HD mice. We show in the N171-82Q mouse model of HD microglial morphologic changes consistent with immune activation. Neonatal iron supplementation in these mice promoted neurodegeneration and resulted in additional microglial activation in adults as determined by increased soma volume and decreased process length. We further demonstrate that iron activates IDO, both in brain lysates and purified recombinant protein (EC50 = 1.24 nM). Brain IDO activity is increased by HD. Neonatal iron supplementation further promoted IDO activity in cerebral cortex, altered KP metabolite profiles, and promoted HD neurodegeneration as measured by brain weights and striatal volumes. Our results demonstrate that dietary iron is an important activator of microglia and the KP pathway in this HD model, and that this occurs in part through a direct effect on IDO. The findings are relevant to understanding how iron promotes neurodegeneration in HD.
Assuntos
Encéfalo/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína Huntingtina/genética , Doença de Huntington/patologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ferro/farmacologia , Microglia/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Doença de Huntington/etiologia , Doença de Huntington/metabolismo , Cinurenina/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismoRESUMO
Huntington's disease (HD) is a progressive ultimately fatal disorder caused by a glutamine-encoding CAG expansion in the huntingtin (HTT) gene that results in degeneration mainly in striatal and cerebro-cortical brain regions. Mitochondrial dysfunction is one important facet of HD pathogenesis. Here we used R6/2 and YAC128 HD mouse models of human HD, that express different HTT transgenes and have different progression rates, to identify HD brain mitochondrial proteomic signatures. Cerebral cortical mitochondrial preparations from HD and wild-type litter mate mice were compared by two-dimensional SDS-PAGE electrophoresis and MALDI-TOF/TOF mass spectrometry. Proteomic analyses inferred 17 and 12 differentially expressed proteins, respectively in 12â¯week R6/2 and 15â¯month YAC128 HD mice, compared to controls. Peroxiredoxin 3, stress-70, DJ-1, isocitrate dehydrogenase [NAD] α subunit and ATP synthase subunit D were differentially expressed in both models. Using the PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification system we show that the inferred proteins are involved in oxidative stress defense, oxidative phosphorylation, the citric acid cycle, pyruvate metabolism, apoptosis, protein folding and iron metabolism. Common mitochondrial proteomic changes are significant in mouse models of middle (YAC128) and advanced (R6/2) HD despite differences in the HTT transgenes, age, genetic background and disease stage. The findings identify a proteomic signature of HD mitochondria in mouse models that includes previously unrecognized proteins.
Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Proteômica , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Mutantes , Mitocôndrias/patologia , Proteínas Mitocondriais/genéticaRESUMO
Mitochondrial bioenergetic dysfunction is involved in neurodegeneration in Huntington's disease (HD). Iron is critical for normal mitochondrial bioenergetics but can also contribute to pathogenic oxidation. The accumulation of iron in the brain occurs in mouse models and in human HD. Yet the role of mitochondria-related iron dysregulation as a contributor to bioenergetic pathophysiology in HD is unclear. We demonstrate here that human HD and mouse model HD (12-week R6/2 and 12-month YAC128) brains accumulated mitochondrial iron and showed increased expression of iron uptake protein mitoferrin 2 and decreased iron-sulfur cluster synthesis protein frataxin. Mitochondria-enriched fractions from mouse HD brains had deficits in membrane potential and oxygen uptake and increased lipid peroxidation. In addition, the membrane-permeable iron-selective chelator deferiprone (1⯵M) rescued these effects ex-vivo, whereas hydrophilic iron and copper chelators did not. A 10-day oral deferiprone treatment in 9-week R6/2 HD mice indicated that deferiprone removed mitochondrial iron, restored mitochondrial potentials, decreased lipid peroxidation, and improved motor endurance. Neonatal iron supplementation potentiates neurodegeneration in mouse models of HD by unknown mechanisms. We found that neonatal iron supplementation increased brain mitochondrial iron accumulation and potentiated markers of mitochondrial dysfunction in HD mice. Therefore, bi-directional manipulation of mitochondrial iron can potentiate and protect against markers of mouse HD. Our findings thus demonstrate the significance of iron as a mediator of mitochondrial dysfunction and injury in mouse models of human HD and suggest that targeting the iron-mitochondrial pathway may be protective.
Assuntos
Encéfalo/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Ferro/metabolismo , Mitocôndrias/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Deferiprona/farmacologia , Feminino , Humanos , Quelantes de Ferro/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologiaRESUMO
Metal phosphides, particularly zinc and aluminum phosphide, occasionally poison horses and other equids following their use as rodenticides and insecticides. Grain-based aluminum phosphide baits are used to control rodents such as prairie dogs. The clinical course in intoxicated horses is short (<24-48 h), and animals may be found dead. Hepatic lesions caused by phosphine poisoning are not well described. Laboratory confirmation depends on detecting phosphine gas in gastric contents. Eight horses and a mule were exposed to zinc phosphide used to control prairie dogs on a Wyoming ranch. Three of 9 exposed equids developed some combination of sweating, ataxia, anxiety, and colic; 2 died acutely, and 1 recovered. A diagnosis of zinc phosphide was made by detecting phosphine in stomach contents from a horse and a mule. The liver was pale and swollen in the affected horse, which died after a clinical course of ~12 h. Other changes were generalized congestion and edema, pulmonary edema, and acute cerebrocortical edema. There was diffuse hepatocellular microvesicular steatosis. Similar histologic lesions were present in 7 equine livers from 2 previously published episodes of metallic phosphide poisoning. Older lesions (>24 h of clinical signs) had centrilobular hepatic necrosis with congestion and a mixture of microvesicular and macrovesicular steatosis. Phosphine poisoning should be considered in horses that die acutely and are found to have steatosis, either with or without hepatocellular necrosis.
Assuntos
Compostos de Alumínio/intoxicação , Doenças dos Cavalos/diagnóstico , Inseticidas/intoxicação , Fosfinas/intoxicação , Rodenticidas/intoxicação , Compostos de Zinco/intoxicação , Animais , Diagnóstico Diferencial , Equidae , Feminino , Conteúdo Gastrointestinal/química , Cavalos , Hepatopatias/patologia , Masculino , Intoxicação/diagnóstico , Intoxicação/veterinária , WyomingRESUMO
BACKGROUND: Huntington's disease (HD) is an autosomal dominant disorder caused by a CAG expansion in the huntingtin gene that results in expression of mutant huntingtin protein. Iron accumulates in HD brain neurons. Amyloid precursor protein (APP) promotes neuronal iron export. However, the role of APP in brain iron accumulation in HD is unclear. OBJECTIVE: To determine the effects of APP insufficiency on HD in YAC128 mice. METHODS: We crossed APP hemizygous mice (APP+/-) with YAC128 mice that are transgenic (Tg) for human mutant huntingtin (hmHTT) to generate APP+/+ hmHTT-/-, APP+/- hmHTT-/-, APP+/+ hmHTT+/- and APP+/- hmHTT+/- progeny. Mice were evaluated for behavioral, biochemical and neuropathology HD outcomes at 2-12 months of age. RESULTS: APP heterozygosity decreased cortical APP 25% and 60% in non-Tg and Tg mice, respectively. Cerebral and striatal iron levels were increased by APP knockdown in Tg mice only. Nest-building behavior was decreased in Tg mice; APP knockdown decreased nest building in non-Tg but not Tg mice. Rota-rod endurance was decreased in Tg mice. APP+/- hHTT+/- mice demonstrated additional decreases in rota-rod endurance from 4-10 months of age. Tg mice had smaller striatal volumes and fewer striatal neurons but were not affected by APP knockdown. CONCLUSIONS: APP heterozygosity results in greater decreases of cortical APP in Tg versus non-Tg mice. Mutant huntingtin transgenic mice develop brain iron accumulation as a result of greater suppression of APP levels. Elevated brain iron in Tg mice was associated with a decline in motor endurance consistent with a disease promoting effect of iron in the YAC128 model of human HD.
Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Haploinsuficiência , Proteína Huntingtina/metabolismo , Ferro/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Feminino , Proteína Huntingtina/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Comportamento de Nidação/fisiologia , Neurônios/patologia , Tamanho do Órgão , Resistência Física/fisiologiaRESUMO
Context: Accumulation of brain iron is linked to aging and protein-misfolding neurodegenerative diseases. High iron intake may influence important brain health outcomes in later life. Objective: The aim of this systematic review was to examine evidence from animal and human studies of the effects of high iron intake or peripheral iron status on adult cognition, brain aging, and neurodegeneration. Data Sources: MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical Trials, and OpenGrey databases were searched. Study Selection: Studies investigating the effect of elevated iron intake at all postnatal life stages in mammalian models and humans on measures of adult brain health were included. Data Extraction: Data were extracted and evaluated by two authors independently, with discrepancies resolved by discussion. Neurodegenerative disease diagnosis and/or behavioral/cognitive, biochemical, and brain morphologic findings were used to study the effects of iron intake or peripheral iron status on brain health. Risk of bias was assessed for animal and human studies. PRISMA guidelines for reporting systematic reviews were followed. Results: Thirty-four preclinical and 14 clinical studies were identified from database searches. Thirty-three preclinical studies provided evidence supporting an adverse effect of nutritionally relevant high iron intake in neonates on brain-health-related outcomes in adults. Human studies varied considerably in design, quality, and findings; none investigated the effects of high iron intake in neonates/infants. Conclusions: Human studies are needed to verify whether dietary iron intake levels used in neonates/infants to prevent iron deficiency have effects on brain aging and neurodegenerative disease outcomes.
Assuntos
Envelhecimento/efeitos dos fármacos , Cognição/efeitos dos fármacos , Ferro da Dieta/administração & dosagem , Ferro da Dieta/efeitos adversos , Anemia Ferropriva/sangue , Anemia Ferropriva/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Bases de Dados Factuais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Ferro/sangue , Deficiências de Ferro , Metanálise como Assunto , Estado Nutricional , Estudos Observacionais como Assunto , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de RiscoRESUMO
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-repeat expansion in the huntingtin protein. Activation of the kynurenine pathway of tryptophan degradation is implicated in the pathogenesis of HD. Indoleamine-2,3-dioxygenase (IDO) catalyzes the oxidation of tryptophan to kynurenine, the first step in this pathway. The prevalent, neuroinvasive protozoal pathogen Toxoplasma gondii (T. gondii) results in clinically silent life-long infection in immune-competent individuals. T. gondii infection results in activation of IDO which provides some protection against the parasite by depleting tryptophan which the parasite cannot synthesize. The kynurenine pathway may therefore represent a point of synergism between HD and T. gondii infection. We show here that IDO activity is elevated at least four-fold in frontal cortex and striata of non-infected N171-82Q HD mice at 14-weeks corresponding to early-advanced HD. T. gondii infection at 5 weeks resulted in elevation of cortical IDO activity in HD mice. HD-infected mice died significantly earlier than wild-type infected and HD control mice. Prior to death, infected HD mice demonstrated decreased CD8+ T-lymphocyte proliferation in brain and spleen compared to wild-type infected mice. We demonstrate for the first time that HD mice have an altered response to an infectious agent that is characterized by premature mortality, altered immune responses and early activation of IDO. Findings are relevant to understanding how T. gondii infection may interact with pathways mediating neurodegeneration in HD.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença de Huntington/complicações , Doença de Huntington/imunologia , Doença de Huntington/metabolismo , Cinurenina/metabolismo , Toxoplasma , Toxoplasmose/complicações , Animais , Biomarcadores , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/patologia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Expressão Gênica , Doença de Huntington/mortalidade , Imunofenotipagem , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ativação Linfocitária , Camundongos , Mortalidade Prematura , Carga Parasitária , Fenótipo , Toxoplasmose/parasitologiaRESUMO
BACKGROUND: Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington's disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4â:â363-74]. However, whether these findings extend to other HD models is unknown. In particular, it is unclear if increased neonatal iron intake can promote neurodegeneration in mouse HD models where disease onset is delayed to mid-adult life. OBJECTIVE: To determine if increased dietary iron intake in neonatal and adult life-stages potentiates HD in the slowly progressive YAC128 HD mouse model. METHODS: Female neonatal mice were supplemented daily from days 10-17 with 120µg/g body weight of carbonyl iron. Adult mice were provided diets containing low (50âppm), medium (150âppm) and high (500âppm) iron concentrations from 2-months of age. HD progression was determined using behavioral, brain morphometric and biochemical approaches. RESULTS: Neonatal-iron supplemented YAC128 HD mice had significantly lower striatal volumes and striatal neuronal cell body volumes as compared to control HD mice at 1-year of age. Neonatal-iron supplementation of HD mice had no effect on rota-rod motor endurance and brain iron or glutathione status. Adult iron intake level had no effect on HD progression. YAC128 HD mice had altered peripheral responses to iron intake compared to iron-matched wild-type controls. CONCLUSIONS: Female YAC128 HD mice supplemented with nutritionally-relevant levels of iron as neonates demonstrate increased striatal degeneration 1-year later.
Assuntos
Corpo Estriado/efeitos dos fármacos , Doença de Huntington/metabolismo , Ferro da Dieta/efeitos adversos , Ferro da Dieta/metabolismo , Animais , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Histocitoquímica , Ferro da Dieta/administração & dosagem , CamundongosRESUMO
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in huntingtin (htt) protein. Dysregulation of brain iron homeostasis, oxidative stress and neurodegeneration are consistent features of the HD phenotype. Therefore, environmental factors that exacerbate oxidative stress and iron dysregulation may potentiate HD. Iron supplementation in the human population is common during infant and adult-life stages. In this study, iron supplementation in neonatal HD mice resulted in deterioration of spontaneous motor running activity, elevated levels of brain lactate and oxidized glutathione consistent with increased energetic dysfunction and oxidative stress, and increased striatal and motor cortical neuronal atrophy, collectively demonstrating potentiation of the disease phenotype. Oxidative stress, energetic, and anatomic markers of degeneration were not affected in wild-type littermate iron-supplemented mice. Further, there was no effect of elevated iron intake on disease outcomes in adult HD mice. We have demonstrated an interaction between the mutant huntingtin gene and iron supplementation in neonatal HD mice. Findings indicate that elevated neonatal iron intake potentiates mouse HD and promotes oxidative stress and energetic dysfunction in brain. Neonatal-infant dietary iron intake level may be an environmental modifier of human HD.
Assuntos
Corpo Estriado/efeitos dos fármacos , Suplementos Nutricionais/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Doença de Huntington/patologia , Compostos de Ferro/efeitos adversos , Córtex Motor/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Dissulfeto de Glutationa/agonistas , Dissulfeto de Glutationa/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Teste de Desempenho do Rota-Rod , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismoRESUMO
Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntington's disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntington's disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy.
Assuntos
Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Fármacos Neuroprotetores/uso terapêutico , Ácido Selenioso/uso terapêutico , Selênio/sangue , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Animais , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Análise de Sobrevida , Fatores de TempoRESUMO
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull's staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD.
Assuntos
Doença de Huntington/metabolismo , Ferro/metabolismo , Neurônios/metabolismo , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Desferroxamina/administração & dosagem , Desferroxamina/farmacologia , Modelos Animais de Doenças , Feminino , Doença de Huntington/fisiopatologia , Doença de Huntington/prevenção & controle , Injeções Intraventriculares , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Masculino , Camundongos , Receptores da Transferrina/metabolismo , Transferrina/metabolismoRESUMO
Huntington disease (HD) is a progressive neurodegenerative disorder caused by expression of polyglutamine-expanded mutant huntingtin protein (mhtt). Most evidence indicates that soluble mhtt species, rather than insoluble aggregates, are the important mediators of HD pathogenesis. However, the differential roles of soluble monomeric and oligomeric mhtt species in HD and the mechanisms of oligomer formation are not yet understood. We have shown previously that copper interacts with and oxidizes the polyglutamine-containing N171 fragment of huntingtin. In this study we report that oxidation-dependent oligomers of huntingtin form spontaneously in cell and mouse HD models. Levels of these species are modulated by copper, hydrogen peroxide, and glutathione. Mutagenesis of all cysteine residues within N171 blocks the formation of these oligomers. In cells, levels of oligomerization-blocked mutant N171 were decreased compared with native N171. We further show that a subset of the oligomerization-blocked form of glutamine-expanded N171 huntingtin is rapidly depleted from the soluble pool compared with "native " mutant N171. Taken together, our data indicate that huntingtin is subject to specific oxidations that are involved in the formation of stable oligomers and that also delay removal from the soluble pool. These findings show that inhibiting formation of oxidation-dependent huntingtin oligomers, or promoting their dissolution, may have protective effects in HD by decreasing the burden of soluble mutant huntingtin.
Assuntos
Cisteína/metabolismo , Doença de Huntington/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , Animais , Células COS , Chlorocebus aethiops , Cisteína/genética , Modelos Animais de Doenças , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Oxirredução , Estrutura Terciária de Proteína , SolubilidadeRESUMO
BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD. RESULTS: Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels. CONCLUSIONS: Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.
RESUMO
Huntington's disease (HD) is a progressive neurodegenerative disease caused by a glutamine expansion within huntingtin protein. The exact pathological mechanisms determining disease onset and progression remain unclear. However, aggregates of insoluble mutant huntingtin (mhtt), a hallmark of HD, are readily detected within neurons in HD brain. Although aggregated polyglutamines may not be inherently toxic, they constitute a biomarker for mutant huntingtin useful for developing therapeutics. We previously reported that the small molecule, C2-8, inhibits polyglutamine aggregation in cell culture and brain slices and rescues degeneration of photoreceptors in a Drosophila model of HD. In this study, we assessed the therapeutic potential of C2-8 in the R6/2 mouse model of HD, which has been used to provide proof-of-concept data in considering whether to advance therapies to human HD. We show that, at nontoxic doses, C2-8 penetrates the blood-brain barrier and is present in brain at a high concentration. C2-8-treated mice showed improved motor performance and reduced neuronal atrophy and had smaller huntingtin aggregates. There have been no prior drug-like, non-toxic, brain-penetrable aggregation inhibitors to arise from cell-based high-throughput screens for reducing huntingtin aggregation that is efficacious in preclinical in vivo models. C2-8 provides an essential tool to help elucidate mechanisms of neurodegeneration in HD and a therapeutic lead for further optimization and development.
Assuntos
Anilidas/uso terapêutico , Doença de Huntington/tratamento farmacológico , Sulfonamidas/uso terapêutico , Anilidas/farmacocinética , Anilidas/farmacologia , Animais , Atrofia/tratamento farmacológico , Barreira Hematoencefálica/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Proteína Huntingtina , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Neostriado/química , Neostriado/efeitos dos fármacos , Neostriado/patologia , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologiaRESUMO
Huntington's disease (HD) is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgenic mice. Increased brain copper correlated with decreased levels of the copper export protein, amyloid precursor protein. We hypothesized that increased amounts of copper bound to low affinity sites could contribute to pro-oxidant activities and neurodegeneration. We focused on two proteins: huntingtin, because of its centrality to HD, and lactate dehydrogenase (LDH), because of its documented sensitivity to copper, necessity for normoxic brain energy metabolism and evidence for altered lactate metabolism in HD brain. The first 171 amino acids of wild-type huntingtin, and its glutamine expanded mutant form, interacted with copper, but not iron. N171 reduced Cu(2+)in vitro in a 1:1 copper:protein stoichiometry indicating that this fragment is very redox active. Further, copper promoted and metal chelation inhibited aggregation of cell-free huntingtin. We found decreased LDH activity, but not protein, and increased lactate levels in HD transgenic mouse brain. The LDH inhibitor oxamate resulted in neurodegeneration when delivered intra-striatially to healthy mice, indicating that LDH inhibition is relevant to neurodegeneration in HD. Our findings support a role of pro-oxidant copper-protein interactions in HD progression and offer a novel target for pharmacotherapeutics.
Assuntos
Encéfalo/metabolismo , Cobre/metabolismo , Doença de Huntington/fisiopatologia , Animais , Córtex Cerebral/metabolismo , Cromatografia de Afinidade , Progressão da Doença , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Ferro/metabolismo , Lactatos/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismoRESUMO
Transcriptional dysregulation has been described as a central mechanism in the pathogenesis of Huntington's disease (HD), in which medium spiny projection neurons (MSN) selectively degenerate whereas neuronal nitric-oxide-synthase-positive interneurons (nNOS-IN) survive. In order to begin to understand this differential vulnerability we compared mRNA levels of selected genes involved in N-methyl-D-aspartate (NMDA) glutamate receptor and calcium (Ca2+) signaling pathways in MSN and nNOS-IN from 12-week-old R6/2 mice, a transgenic mouse model of HD and wild-type littermates. We undertook a laser capture microdissection (LCM) study to examine the contribution of transcriptional dysregulation in candidate genes involved in these two signaling pathways in discrete populations of striatal neurons. The use of LCM in combination with quantitative real-time polymerase chain reaction (Q-PCR) allowed us to quantify the neuronal abundance of candidate mRNAs. We found different transcriptional alterations in R6/2 neurons for both MSN and nNOS-IN, indicating that global transcriptional dysregulation alone does not account for selective vulnerability. Further, we observed a striking enrichment of several mRNAs in the nNOS-IN population, including that for the NMDA receptor subunit NR2D, the postsynaptic density protein 95 (PSD-95) and the huntingtin-associated protein 1 (HAP1) as well as nitric-oxide-synthase (nNOS) mRNA itself. The higher expression levels of these molecules in nNOS-IN when compared with MSN together with an association of nNOS, NR2D and HAP1 in a protein complex with PSD-95 suggest that these proteins may be involved in protective pathways that contribute to the resistance of this interneuron population to neurodegeneration in HD.
Assuntos
Doença de Huntington/metabolismo , Interneurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transcrição Gênica/fisiologia , Animais , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Proteínas do Tecido Nervoso/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Cystamine, a small disulfide-containing chemical, is neuroprotective in a transgenic mouse and a Drosophila model of Huntington's disease (HD) and decreases huntingtin aggregates in an in vitro model of HD. The mechanism of action of cystamine in these models is widely thought to involve inhibition of transglutaminase mediated cross-linking of mutant huntingtin in the process of aggregate formation/stabilization. In this study we show that cystamine, both in vitro and in a transgenic mouse model of HD (R6/2), increases levels of the cellular antioxidant L-cysteine. Several oxidative stress markers increase in HD brain. We provide further evidence of oxidative stress in mouse HD by demonstrating compensatory responses in R6/2 HD brains. We found age-dependent increases in forebrain glutathione (GSH), and increased levels of transcripts coding for proteins involved in GSH synthesis and detoxification pathways, as revealed by quantitative PCR analysis. Given the general importance of oxidative stress as a mediator of neurodegeneration we propose that an increase in brain L-cysteine levels could be protective in HD. Furthermore, cystamine was dramatically protective against 3-nitropropionic acid-induced striatal injury in mice. We suggest that cystamine's neuroprotective effect in HD transgenic mice results from pleiotropic effects that include transglutaminase inhibition and antioxidant activity.
Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cistamina/farmacologia , Cisteína/metabolismo , Doença de Huntington/metabolismo , Peptídeos/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Encéfalo/patologia , Butionina Sulfoximina/farmacologia , Citoproteção/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Peptídeos/genética , RatosRESUMO
Phenyl saligenin phosphate (PSP) induces a central-peripheral distal axonopathy in domestic fowl that develops 7-21 days after a single exposure. Neurotoxic esterase (NTE) is the initial molecular target for this neurotoxicity. PSP has to covalently bind to NTE and chemically "age" for induction of axonopathy. It was hypothesized that exposure to PSP results in early changes in spinal cord gene expression that do not occur with phenylmethylsulfonyl fluoride, a non-neuropathic compound that also inhibits NTE, or DMSO controls. Targeted display was used to screen approximately 15,000 gel bands. Three candidate genes were identified, but only the transcript designated P1 showed decreased expression following PSP exposure (2 mg/kg i.m.) in subsequent Northern blot and in situ hybridization experiments in samples taken <48 h after exposure. Additional experiments revealed that a approximately 2.5 kb alpha-tubulin transcript had decreased expression at 12-48 h after PSP exposure, with maximum change at 48 h (33%, p = 0.0479). A approximately 4.5 kb alpha-tubulin transcript had increased expression at 12 h (38%, p = 0.0125) and decreased expression at 48 h (28%, p = 0.0576). In situ hybridization on spinal cord revealed neuronal expression of P1 and alpha-tubulin transcripts. Decreased expression of transcripts for P1 and alpha-tubulin was present at 12 and 48 h, respectively. This decrease occurred in all neurons, not just those whose axons degenerate. Results suggest that (1) in PSP-induced OPIDN (organophosphorus-induced delayed neurotoxicity) some gene transcript expression changes are associated with initiation of axonopathy, and (2) PSP modulates spinal cord gene expression in neuronal types that do not undergo axonal degeneration.