Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 62(10): 617-623, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37283355

RESUMO

The promyelocytic leukemia-retinoic acid receptor-α (PML::RARA) fusion is the hallmark of acute promyelocytic leukemia (APL) and is observed in over 95% of APL cases. RARA and homologous receptors RARB and RARG are occasionally fused to other gene partners, which differentially affect sensitivity to targeted therapies. Most APLs without RARA fusions have rearrangements involving RARG or RARB, both of which frequently show resistance to all-trans-retinoic acid (ATRA) and/or multiagent chemotherapy for acute myeloid leukemia (AML). We present a 13-year-old male diagnosed with variant APL with a novel FNDC3B::RARB in-frame fusion that showed no response to ATRA but responded well to conventional AML therapy. While FNDC3B has been identified as a rare RARA translocation partner in ATRA-sensitive variant APL, it has never been reported as a fusion partner with RARB and it is only the second known fusion partner with RARB in variant APL. We also show that this novel fusion confers an RNA expression signature that is similar to APL, despite clinical resistance to ATRA monotherapy.


Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Masculino , Humanos , Adolescente , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Translocação Genética , Tretinoína/uso terapêutico , Leucemia Mieloide Aguda/genética , Receptor alfa de Ácido Retinoico/genética , Genômica , Proteínas de Fusão Oncogênica/genética , Fibronectinas/genética
2.
Blood Cancer Discov ; 3(3): 194-207, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35176137

RESUMO

The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE: We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.


Assuntos
Leucemia Mieloide Aguda , Adulto , Criança , Aberrações Cromossômicas , Éxons , Genômica , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Recidiva
3.
Cancer Discov ; 11(12): 3008-3027, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301788

RESUMO

Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer-predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors), and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor-normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers. SIGNIFICANCE: Pediatric cancers are driven by diverse genomic lesions, and sequencing has proven useful in evaluating high-risk and relapsed/refractory cases. We show that combined WGS, WES, and RNA-seq of tumor and paired normal tissues enables identification and characterization of genetic drivers across the full spectrum of pediatric cancers. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Neoplasias , Criança , DNA , Humanos , Mutação , Neoplasias/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
4.
Genetics ; 211(4): 1345-1355, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692195

RESUMO

To detect a direction to evolution, without the pitfalls of reconstructing ancestral states, we need to compare "more evolved" to "less evolved" entities. But because all extant species have the same common ancestor, none are chronologically more evolved than any other. However, different gene families were born at different times, allowing us to compare young protein-coding genes to those that are older and hence have been evolving for longer. To be retained during evolution, a protein must not only have a function, but must also avoid toxic dysfunction such as protein aggregation. There is conflict between the two requirements: hydrophobic amino acids form the cores of protein folds, but also promote aggregation. Young genes avoid strongly hydrophobic amino acids, which is presumably the simplest solution to the aggregation problem. Here we show that young genes' few hydrophobic residues are clustered near one another along the primary sequence, presumably to assist folding. The higher aggregation risk created by the higher hydrophobicity of older genes is counteracted by more subtle effects in the ordering of the amino acids, including a reduction in the clustering of hydrophobic residues until they eventually become more interspersed than if distributed randomly. This interspersion has previously been reported to be a general property of proteins, but here we find that it is restricted to old genes. Quantitatively, the index of dispersion delineates a gradual trend, i.e., a decrease in the clustering of hydrophobic amino acids over billions of years.


Assuntos
Amiloide/genética , Evolução Molecular , Modelos Genéticos , Amiloide/química , Amiloide/metabolismo , Animais , Camundongos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Seleção Genética
5.
Structure ; 25(11): 1687-1696.e4, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29033289

RESUMO

The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S. cerevisiae, folds to a partially specific three-dimensional structure. Bsc4 forms soluble, compact oligomers with high ß sheet content and a hydrophobic core, and undergoes cooperative, reversible denaturation. Bsc4 lacks a specific quaternary state, however, existing instead as a continuous distribution of oligomer sizes, and binds dyes indicative of amyloid oligomers or molten globules. The combination of native-like and non-native-like properties suggests a rudimentary fold that could potentially act as a functional intermediate in the emergence of new folded proteins de novo.


Assuntos
DNA Intergênico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , DNA Intergênico/genética , DNA Intergênico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Biossíntese de Proteínas , Conformação Proteica em Folha beta , Desnaturação Proteica , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
6.
Nat Ecol Evol ; 1(6): 0146-146, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28642936

RESUMO

The phenomenon of de novo gene birth from junk DNA is surprising, because random polypeptides are expected to be toxic. There are two conflicting views about how de novo gene birth is nevertheless possible: the continuum hypothesis invokes a gradual gene birth process, while the preadaptation hypothesis predicts that young genes will show extreme levels of gene-like traits. We show that intrinsic structural disorder conforms to the predictions of the preadaptation hypothesis and falsifies the continuum hypothesis, with all genes having higher levels than translated junk DNA, but young genes having the highest level of all. Results are robust to homology detection bias, to the non-independence of multiple members of the same gene family, and to the false positive annotation of protein-coding genes.

7.
Genome Biol Evol ; 7(6): 1686-701, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26002864

RESUMO

Protein-coding sequences can arise either from duplication and divergence of existing sequences, or de novo from noncoding DNA. Unfortunately, recently evolved de novo genes can be hard to distinguish from false positives, making their study difficult. Here, we study a more tractable version of the process of conversion of noncoding sequence into coding: the co-option of short segments of noncoding sequence into the C-termini of existing proteins via the loss of a stop codon. Because we study recent additions to potentially old genes, we are able to apply a variety of stringent quality filters to our annotations of what is a true protein-coding gene, discarding the putative proteins of unknown function that are typical of recent fully de novo genes. We identify 54 examples of C-terminal extensions in Saccharomyces and 28 in Drosophila, all of them recent enough to still be polymorphic. We find one putative gene fusion that turns out, on close inspection, to be the product of replicated assembly errors, further highlighting the issue of false positives in the study of rare events. Four of the Saccharomyces C-terminal extensions (to ADH1, ARP8, TPM2, and PIS1) that survived our quality filters are predicted to lead to significant modification of a protein domain structure.


Assuntos
Códon de Terminação , Evolução Molecular , Polimorfismo Genético , Proteínas/genética , Regiões 3' não Traduzidas , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Fúngicas/genética , Conformação Proteica , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA