Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 60(2): 717-28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26525784

RESUMO

Class C ß-lactamases poorly hydrolyze cephamycins (e.g., cefoxitin, cefotetan, and moxalactam). In the past 2 decades, a new family of plasmid-based AmpC ß-lactamases conferring resistance to cefoxitin, the FOX family, has grown to include nine unique members descended from the Aeromonas caviae chromosomal AmpC. To understand the basis for the unique cephamycinase activity in the FOX family, we determined the first X-ray crystal structures of FOX-4, apo enzyme and the acyl-enzyme with its namesake compound, cefoxitin, using the Y150F deacylation-deficient variant. Notably, recombinant expression of N-terminally tagged FOX-4 also yielded an inactive adenylylated enzyme form not previously observed in ß-lactamases. The posttranslational modification (PTM), which occurs on the active site Ser64, would not seem to provide a selective advantage, yet might present an opportunity for the design of novel antibacterial drugs. Substantial ligand-induced changes in the enzyme are seen in the acyl-enzyme complex, particularly the R2 loop and helix H10 (P289 to N297), with movement of F293 by 10.3 Å. Taken together, this study provides the first picture of this highly proficient class C cephamycinase, uncovers a novel PTM, and suggests a possible cephamycin resistance mechanism involving repositioning of the substrate due to the presence of S153P, N289P, and N346I substitutions in the ligand binding pocket.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/ultraestrutura , Cefoxitina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/ultraestrutura , beta-Lactamases/ultraestrutura , Aeromonas caviae/efeitos dos fármacos , Sequência de Aminoácidos , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cefoxitina/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Espectrometria de Massas em Tandem , beta-Lactamases/genética , beta-Lactamases/metabolismo
2.
Protein Eng Des Sel ; 21(7): 443-51, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18456870

RESUMO

The system described here allows the expression of protein fragments into a solvent-exposed loop of a carrier protein, the beta-lactamase BlaP. When using Escherichia coli constitutive expression vectors, a positive selection of antibioresistant bacteria expressing functional hybrid beta-lactamases is achieved in the presence of beta-lactams making further screening of correctly folded and secreted hybrid beta-lactamases easier. Protease-specific recognition sites have been engineered on both sides of the beta-lactamase permissive loop in order to cleave off the exogenous protein fragment from the carrier protein by an original two-step procedure. According to our data, this approach constitutes a suitable alternative for production of difficult to express protein domains. This work demonstrates that the use of BlaP as a carrier protein does not alter the biochemical activity and the native disulphide bridge formation of the inserted chitin binding domain of the human macrophage chitotriosidase. We also report that the beta-lactamase activity of the hybrid protein can be used to monitor interactions between the inserted protein fragments and its ligands and to screen neutralizing molecules.


Assuntos
Ligantes , Engenharia de Proteínas/métodos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Candida albicans/metabolismo , Quitina/análise , Quitina/genética , Escherichia coli/metabolismo , Hexosaminidases/genética , Cinética , Plasmídeos/genética , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray
3.
Antimicrob Agents Chemother ; 51(6): 2136-42, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17307979

RESUMO

Various inhibitors of metallo-beta-lactamases have been reported; however, none are effective for all subgroups. Those that have been found to inhibit the enzymes of subclass B2 (catalytically active with one zinc) either contain a thiol (and show less inhibition towards this subgroup than towards the dizinc members of B1 and B3) or are inactivators behaving as substrates for the dizinc family members. The present work reveals that certain pyridine carboxylates are competitive inhibitors of CphA, a subclass B2 enzyme. X-ray crystallographic analyses demonstrate that pyridine-2,4-dicarboxylic acid chelates the zinc ion in a bidentate manner within the active site. Salts of these compounds are already available and undergoing biomedical testing for various nonrelated purposes. Pyridine carboxylates appear to be useful templates for the development of more-complex, selective, nontoxic inhibitors of subclass B2 metallo-beta-lactamases.


Assuntos
Aeromonas hydrophila/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácidos Picolínicos/farmacologia , Piridinas/farmacologia , Inibidores de beta-Lactamases , Aeromonas hydrophila/enzimologia , Proteínas de Bactérias/química , Ligação Competitiva , Cristalografia por Raios X , Inibidores Enzimáticos/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Picolínicos/química , Piridinas/química , beta-Lactamases/química
4.
Antimicrob Agents Chemother ; 49(10): 4410-2, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16189136

RESUMO

The susceptibility of typical class D beta-lactamases to inhibition by acyl phosph(on)ates has been determined. To a large degree, these class D enzymes behaved very similarly to the class A TEM beta-lactamase towards these reagents. Dibenzoyl phosphate stood out in both cases as a lead compound towards a new class of effective inhibitors.


Assuntos
Organofosfonatos/farmacologia , Fosfatos/farmacologia , Inibidores de beta-Lactamases , beta-Lactamases/classificação , Hidrocarbonetos Acíclicos/química , Hidrocarbonetos Acíclicos/farmacologia , Cinética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Organofosfonatos/química , Fosfatos/química
5.
J Biotechnol ; 118(4): 339-52, 2005 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-16026883

RESUMO

The cloning and sequencing of the rbpa gene coding for a versatile peroxidase from a novel Bjerkandera strain is hereby reported. The 1777 bp isolated fragment contained a 1698 bp peroxidase-encoding gene, interrupted by 11 introns. The 367 amino acid-deduced sequence includes a 27 amino acid-signal peptide. The molecular model, built via homology modelling with crystal structures of four fungal peroxidases, highlighted the amino acid residues putatively involved in manganese binding and aromatic substrate oxidation. The potential heme pocket residues (R44, F47, H48, E79, N85, H177, F194 and D239) include both distal and proximal histidines (H48 and H177). RBP possesses potential calcium-binding residues (D49, G67, D69, S71, S178, D195, T197, I200 and D202) and eight cysteine residues (C3, C15, C16, C35, C121, C250, C286, C316). In addition, RBP includes residues involved in substrate oxidation: three acidic residues (E37, E41 and D183)--putatively involved in manganese binding and H83 and W172--potentially involved in oxidation of aromatic substrates. Characterisation of nucleotide and amino acid sequences include RBP in versatile peroxidase group sharing catalytic properties of both LiP and MnP. In addition, the RBP enzyme appears to be closely related with the ligninolytic peroxidases from the Trametes versicolor strain.


Assuntos
Basidiomycota/enzimologia , Proteínas Fúngicas/genética , Peroxidase/genética , Sequência de Bases , Basidiomycota/genética , Clonagem Molecular , Proteínas Fúngicas/química , Dados de Sequência Molecular , Peroxidase/química , Filogenia , Estrutura Terciária de Proteína
6.
Langmuir ; 20(17): 7201-7, 2004 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-15301506

RESUMO

Two-color sum-frequency generation spectroscopy (2C-SFG) is used to probe the molecular and electronic properties of an adsorbed layer of the green fluorescent protein mutant 2 (GFPmut2) on a platinum (111) substrate. First, the spectroscopic measurements, performed under different polarization combinations, and atomic force microscopy (AFM) show that the GFPmut2 proteins form a fairly ordered monolayer on the platinum surface. Next, the nonlinear spectroscopic data provide evidence of particular coupling phenomena between the GFPmut2 vibrational and electronic properties. This is revealed by the occurrence of two doubly resonant sum-frequency generation processes for molecules having both their Raman and infrared transition moments in a direction perpendicular to the sample plane. Finally, our 2C-SFG analysis reveals two electronic transitions corresponding to the absorption and fluorescence energy levels which are related to two different GFPmut2 conformations: the B (anionic) and I forms, respectively. Their observation and wavelength positions attest the keeping of the GFPmut2 electronic properties upon adsorption on the metallic surface.


Assuntos
Proteínas de Fluorescência Verde/química , Membranas Artificiais , Análise Espectral/métodos , Adsorção , Animais , Eletroquímica , Microscopia de Força Atômica/métodos , Mutação , Platina/química , Conformação Proteica , Estrutura Secundária de Proteína , Especificidade da Espécie , Propriedades de Superfície , Vibração
7.
Cell Mol Life Sci ; 60(11): 2501-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14625692

RESUMO

The CphA metallo-beta-lactamase produced by Aeromonas hydrophila exhibits two zinc-binding sites. Maximum activity is obtained upon binding of one zinc ion, whereas binding of the second zinc ion results in a drastic decrease in the hydrolytic activity. In this study, we analyzed the role of Asn116 and Cys221, two residues of the active site. These residues were replaced by site-directed mutagenesis and the different mutants were characterized. The C221S and C221A mutants were seriously impaired in their ability to bind the first, catalytic zinc ion and were nearly completely inactive, indicating a major role for Cys221 in the binding of the catalytic metal ion. By contrast, the binding of the second zinc ion was only slightly affected, at least for the C221S mutant. Mutation of Asn116 did not lead to a drastic decrease in the hydrolytic activity, indicating that this residue does not play a key role in the catalytic mechanism. However, the substitution of Asn116 by a Cys or His residue resulted in an approximately fivefold increase in the affinity for the second, inhibitory zinc ion. Together, these data suggested that the first zinc ion is located in the binding site involving the Cys221 and that the second zinc ion binds in the binding site involving Asn116 and, presumably, His118 and His196.


Assuntos
Aeromonas hydrophila/enzimologia , Proteínas de Bactérias/química , Zinco/metabolismo , beta-Lactamases/química , Asparagina , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Cisteína , Cinética , Dados de Sequência Molecular , Relação Estrutura-Atividade , beta-Lactamases/metabolismo
8.
Cell Mol Life Sci ; 60(8): 1764-73, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14521155

RESUMO

The structures of the class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a boronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 A, respectively. The structure of the enzyme resembles those of other class C beta-lactamases. The structure of the complex with the transition-state analogue, iodo-acetamido-phenyl boronic acid, shows that the inhibitor is covalently bound to the active-site serine (Ser64). Binding of the inhibitor within the active site is compared with previously determined structures of complexes with other class C enzymes. The structure of the boronic acid adduct indicates ways to improve the affinity of this class of inhibitors. This structure of 908R class C beta-lactamase in complex with a transition-state analogue provides further insights into the mechanism of action of these hydrolases.


Assuntos
Enterobacter cloacae/enzimologia , beta-Lactamases/química , Apoenzimas/química , Ácidos Borônicos/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Proteica , beta-Lactamases/classificação , beta-Lactamases/metabolismo
9.
J Mol Biol ; 325(4): 651-60, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12507470

RESUMO

The beta-lactamases are involved in bacterial resistance to penicillin and related compounds. Members of the metallo-enzyme class are now found in many pathogenic bacteria and are thus becoming of major clinical importance. The structures of the Zn-beta-lactamase from Fluoribacter gormanii (FEZ-1) in the native and in the complex form are reported here. FEZ-1 is a monomeric enzyme, which possesses two zinc-binding sites. These structures are discussed in comparison with those of the tetrameric L1 enzyme produced by Stenotrophomonas maltophilia. From this analysis, amino acids involved in the oligomerization of L1 are clearly identified. Despite the similarity in fold, the active site of FEZ-1 was found to be significantly different. Two residues, which were previously implicated in function, are not present in L1 or in FEZ-1. The broad-spectrum substrate profile of Zn-beta-lactamases arises from the rather wide active-site cleft, where various beta-lactam compounds can be accommodated.


Assuntos
Legionellaceae/enzimologia , beta-Lactamases/química , Sequência de Aminoácidos , Captopril/química , Domínio Catalítico , Legionellaceae/genética , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , beta-Lactamases/genética
10.
Acta Crystallogr D Biol Crystallogr ; 57(Pt 12): 1813-9, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11717493

RESUMO

Family 11 endo-beta-1,4-xylanases degrade xylan, the main constituent of plant hemicelluloses, and have many potential uses in biotechnology. The structure of Xyl1, a family 11 endo-xylanase from Streptomyces sp. S38, has been solved. The protein crystallized from ammonium sulfate in the trigonal space group P321, with unit-cell parameters a = b = 71.49, c = 130.30 A, gamma = 120.0 degrees. The structure was solved at 2.0 A by X-ray crystallography using the molecular-replacement method and refined to a final R factor of 18.5% (R(free) = 26.9%). Xyl1 has the overall fold characteristic of family 11 xylanases, with two highly twisted beta-sheets defining a long cleft containing the two catalytic residues Glu87 and Glu177.


Assuntos
Endo-1,4-beta-Xilanases , Streptomyces/enzimologia , Xilosidases/química , Sequência de Aminoácidos , Catálise , Cristalização , Cristalografia por Raios X , Ácido Glutâmico/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
11.
Antimicrob Agents Chemother ; 45(12): 3509-16, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11709332

RESUMO

A class D beta-lactamase determinant was isolated from the genome of Legionella (Fluoribacter) gormanii ATCC 33297(T). The enzyme, named OXA-29, is quite divergent from other class D beta-lactamases, being more similar (33 to 43% amino acid identity) to those of groups III (OXA-1) and IV (OXA-9, OXA-12, OXA-18, and OXA-22) than to other class D enzymes (21 to 24% sequence identity). Phylogenetic analysis confirmed the closer ancestry of OXA-29 with members of the former groups. The OXA-29 enzyme was purified from an Escherichia coli strain overexpressing the gene via a T7-based expression system by a single ion-exchange chromatography step on S-Sepharose. The mature enzyme consists of a 28.5-kDa polypeptide and exhibits an isoelectric pH of >9. Analysis of the kinetic parameters of OXA-29 revealed efficient activity (k(cat)/K(m) ratios of >10(5) M(-1) x s(-1)) for several penam compounds (oxacillin, methicillin, penicillin G, ampicillin, carbenicillin, and piperacillin) and also for cefazolin and nitrocefin. Oxyimino cephalosporins and aztreonam were also hydrolyzed, although less efficiently (k(cat)/K(m) ratios of around 10(3) M(-1) x s(-1)). Carbapenems were neither hydrolyzed nor inhibitory. OXA-29 was inhibited by BRL 42715 (50% inhibitory concentration [IC(50)], 0.44 microM) and by tazobactam (IC(50), 3.2 microM), but not by clavulanate. It was also unusually resistant to chloride ions (IC(50), >100 mM). Unlike OXA-10, OXA-29 was apparently found as a dimer both in diluted solutions and in the presence of EDTA. Its activity was either unaffected or inhibited by divalent cations. OXA-29 is a new class D beta-lactamase that exhibits some unusual properties likely reflecting original structural and mechanistic features.


Assuntos
Proteínas de Bactérias , Legionella/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Sequência de Aminoácidos , Antibacterianos/farmacologia , Quelantes/farmacologia , Cromatografia em Gel , Clonagem Molecular , DNA Recombinante/genética , Ácido Edético/farmacologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/genética , Genes Bacterianos , Cinética , Legionella/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Espectrometria de Massas por Ionização por Electrospray , Compostos de Sulfidrila/química
12.
Antimicrob Agents Chemother ; 45(10): 2807-12, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11557473

RESUMO

Small, soluble single-domain fragments derived from the unique variable region of dromedary heavy-chain antibodies (VHHs) against enzymes are known to be potent inhibitors. The immunization of dromedaries with the TEM-1 and BcII beta-lactamases has lead to the isolation of such single-domain antibody fragments specifically recognizing and inhibiting those beta-lactamases. Two VHHs were isolated that inhibit TEM-1 and one BcII inhibiting VHH was identified. All inhibitory VHHs were tight-binding inhibitors. The 50% inhibitory concentrations were determined for all inhibitors and they were all in the same range as the enzyme concentration used in the assay. Addition of the VHHs to the TEM-1 beta-lactamase, expressed on the surface of bacteria, leads to a higher ampicillin sensitivity of the bacteria. This innovative strategy could generate multiple potent inhibitors for all types of beta-lactamases.


Assuntos
Proteínas de Bactérias/farmacologia , Camelus/imunologia , Fragmentos de Imunoglobulinas/farmacologia , Inibidores de beta-Lactamases , Sequência de Aminoácidos , Ampicilina/farmacologia , Animais , Especificidade de Anticorpos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Fragmentos de Imunoglobulinas/isolamento & purificação , Masculino , Dados de Sequência Molecular , Resistência às Penicilinas , Penicilinas/farmacologia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , beta-Lactamases/imunologia
13.
J Biol Chem ; 276(48): 45065-78, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11551939

RESUMO

One high affinity (nm) and one low affinity (microM) macroscopic dissociation constant for the binding of metal ions were found for the wild-type metallo-beta-lactamase from Bacillus cereus as well as six single-site mutants in which all ligands in the two metal binding sites were altered. Surprisingly, the mutations did not cause a specific alteration of the affinity of metal ions for the sole modified binding site as determined by extended x-ray absorption fine structure (EXAFS) and perturbed angular correlation of gamma-rays spectroscopy, respectively. Also UV-visible absorption spectra for the mono-cobalt enzymes clearly contain contributions from both metal sites. The observations of the very similar microscopic dissociation constants of both binding sites in contrast to the significantly differing macroscopic dissociation constants inevitably led to the conclusion that binding to the two metal sites exhibits negative cooperativity. The slow association rates for forming the binuclear enzyme determined by stopped-flow fluorescence measurements suggested that fast metal exchange between the two sites for the mononuclear enzyme hinders the binding of a second metal ion. EXAFS spectroscopy of the mono- and di-zinc wild type enzymes and two di-zinc mutants provide a definition of the metal ion environments, which is compared with the available x-ray crystallographic data.


Assuntos
Bacillus cereus/enzimologia , Íons , beta-Lactamases/genética , beta-Lactamases/metabolismo , Sítios de Ligação , Ligação Competitiva , Cádmio/metabolismo , Cristalografia por Raios X , Bases de Dados como Assunto , Raios gama , Cinética , Ligantes , Metais/farmacologia , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Espectrometria de Fluorescência , Espectrofotometria , Especificidade por Substrato , Raios Ultravioleta , Raios X , Zinco/metabolismo
14.
J Biol Chem ; 276(48): 45015-23, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11564740

RESUMO

Resistance to beta-lactam antibiotics mediated by metallo-beta-lactamases is an increasingly worrying clinical problem. Candidate inhibitors include mercaptocarboxylic acids, and we report studies of a simple such compound, thiomandelic acid. A series of 35 analogues were synthesized and examined as metallo-beta-lactamase inhibitors. The K(i) values (Bacillus cereus enzyme) are 0.09 microm for R-thiomandelic acid and 1.28 microm for the S-isomer. Structure-activity relationships show that the thiol is essential for activity and the carboxylate increases potency; the affinity is greatest when these groups are close together. Thioesters of thiomandelic acid are substrates for the enzyme, liberating thiomandelic acid, suggesting a starting point for the design of "pro-drugs." Importantly, thiomandelic acid is a broad spectrum inhibitor of metallo-beta-lactamases, with a submicromolar K(i) value for all nine enzymes tested, except the Aeromonas hydrophila enzyme; such a wide spectrum of activity is unprecedented. The binding of thiomandelic acid to the B. cereus enzyme was studied by NMR; the results are consistent with the idea that the inhibitor thiol binds to both zinc ions, while its carboxylate binds to Arg(91). Amide chemical shift perturbations for residues 30-40 (the beta(3)-beta(4) loop) suggest that this small inhibitor induces a movement of this loop of the kind seen for other larger inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Zinco/metabolismo , Inibidores de beta-Lactamases , Arginina/química , Sítios de Ligação , Cinética , Espectroscopia de Ressonância Magnética , Ácidos Mandélicos/síntese química , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Espectrofotometria , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Zinco/química
15.
Chem Biol ; 8(8): 831-42, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11514231

RESUMO

BACKGROUND: The stabilization of enzymes in the presence of substrates has been recognized for a long time. Quantitative information regarding this phenomenon is, however, rather scarce since the enzyme destroys the potential stabilizing agent during the course of the experiments. In this work, enzyme unfolding was followed by monitoring the progressive decrease of the rate of substrate utilization by the Staphylococcus aureus PC1 beta-lactamase, at temperatures above the melting point of the enzyme. RESULTS: Enzyme inactivation was directly followed by spectrophotometric measurements. In the presence of substrate concentrations above the K(m) values, significant stabilization was observed with all tested compounds. A combination of unfolding kinetic measurements and enzymatic studies, both under steady-state and non-steady-state regimes, allowed most of the parameters characteristic of the two concurrent phenomena (i.e. substrate hydrolysis and enzyme denaturation) to be evaluated. In addition, molecular modelling studies show a good correlation between the extent of stabilization, and the magnitude of the energies of interaction with the enzyme. CONCLUSIONS: Our analysis indicates that the enzyme is substantially stabilized towards heat-induced denaturation, independently of the relative proportions of non-covalent Henri-Michaelis complex (ES) and acyl-enzyme adduct (ES*). Thus, for those substrates with which the two catalytic intermediates are expected to be significantly populated, both species (ES and ES*) appear to be similarly stabilized. This analysis contributes a new quantitative approach to the problem.


Assuntos
Antibacterianos/metabolismo , Staphylococcus aureus/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Acilação , Estabilidade Enzimática , Cinética , Modelos Moleculares , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Temperatura , Fatores de Tempo , beta-Lactamas
16.
Nat Struct Biol ; 8(8): 674-8, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11473256

RESUMO

Bacillus subtilis DppA is a binuclear zinc-dependent, D-specific aminopeptidase. The X-ray structure of the enzyme has been determined at 2.4 A resolution by a three-wavelength MAD experiment. The structure reveals that DppA is a new example of a 'self-compartmentalizing protease', a family of proteolytic complexes. Proteasomes are the most extensively studied representatives of this family. The DppA enzyme is composed of identical 30 kDa subunits organized in a decamer with 52 point-group symmetry. A 20 A wide channel runs through the complex, giving access to a central chamber holding the active sites. The structure shows DppA to be a prototype of a new family of metalloaminopeptidases characterized by the SXDXEG key sequence.


Assuntos
Aminopeptidases/química , Bacillus subtilis/enzimologia , Sequência de Aminoácidos , Aminopeptidases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Zinco/metabolismo
17.
Cell Mol Life Sci ; 58(5-6): 835-43, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11437242

RESUMO

Deacetoxycephalosporin C synthase from Streptomyces clavuligerus catalyses the conversion of the five-membered penicillin ring to the unsaturated six-membered cephem ring of deacetoxycephalosporin C. The effects on enzyme activity of the penicillin substrate sidechain and various cofactors were investigated using a continuous spectrophotometric assay. The conversion of penicillin G to phenylacetyl-7-aminodeacetoxycephalo sporanic acid (G-7-ADCA) was confirmed, and further details of the reaction were elucidated. The conversion of ampicillin to cephalexin was faster than that of acetyl-6-APA to acetyl-7-ADCA kcat = 0.120 +/- 0.001 s(-1) versus 0.035 +/- 0.001 s(-1), but they had similar Km values: 4.86 +/- 0.12 and 3.28 +/- 0.26 mM, respectively. Amoxycillin and penicillin V were also converted at low levels. Conversion was not detected for penicillanate, 6-aminopenicillanate, carbenicillin, temocillin, ticarcillin or benzylpenicilloic acid, suggesting that the enzyme has a relatively strict selectivity for the sidechain of the penicillin substrate.


Assuntos
Transferases Intramoleculares/metabolismo , Proteínas de Ligação às Penicilinas , Penicilinas/química , Penicilinas/metabolismo , Streptomyces/enzimologia , Amoxicilina/metabolismo , Ampicilina/metabolismo , Ácido Ascórbico/metabolismo , Dióxido de Carbono/metabolismo , Cefalexina/metabolismo , Cefalosporinas/química , Cefalosporinas/metabolismo , Cromatografia Líquida de Alta Pressão , Coenzimas/metabolismo , Transferases Intramoleculares/genética , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cinética , Oxigênio/metabolismo , Penicilina G/metabolismo , Penicilina V/metabolismo , Proteínas Recombinantes/metabolismo , Substâncias Redutoras/metabolismo , Espectrofotometria , Especificidade por Substrato , Termodinâmica
18.
Eur J Biochem ; 268(13): 3840-50, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11432752

RESUMO

Incubation of moxalactam and cefoxitin with the Aeromonas hydrophila metallo-beta-lactamase CphA leads to enzyme-catalyzed hydrolysis of both compounds and to irreversible inactivation of the enzyme by the reaction products. As shown by electrospray mass spectrometry, the inactivation of CphA by cefoxitin and moxalactam is accompanied by the formation of stable adducts with mass increases of 445 and 111 Da, respectively. The single thiol group of the inactivated enzyme is no longer titrable, and dithiothreitol treatment of the complexes partially restores the catalytic activity. The mechanism of inactivation by moxalactam was studied in detail. Hydrolysis of moxalactam is followed by elimination of the 3' leaving group (5-mercapto-1-methyltetrazole), which forms a disulfide bond with the cysteine residue of CphA located in the active site. Interestingly, this reaction is catalyzed by cacodylate.


Assuntos
Aeromonas hydrophila/enzimologia , Proteínas de Bactérias , Cefamicinas/metabolismo , Cefamicinas/farmacologia , Moxalactam/metabolismo , Moxalactam/farmacologia , beta-Lactamases/metabolismo , Cefamicinas/química , Hidrólise , Cinética , Estrutura Molecular , Moxalactam/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Inibidores de beta-Lactamases
19.
Antimicrob Agents Chemother ; 45(8): 2215-23, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11451677

RESUMO

A detailed kinetic study of the interaction between two ethylidene derivatives of tricyclic carbapenems, Lek 156 and Lek 157, and representative beta-lactamases and D-alanyl-D-alanine peptidases (DD-peptidases) is presented. Both compounds are very efficient inactivators of the Enterobacter cloacae 908R beta-lactamase, which is usually resistant to inhibition. Preliminary experiments indicate that various extended-spectrum class C beta-lactamases (ACT-1, CMY-1, and MIR-1) are also inactivated. With the E. cloacae 908R enzyme, complete inactivation occurs with a second-order rate constant, k(2)/K', of 2 x 10(4) to 4 x 10(4) M(-1) s(-1), and reactivation is very slow, with a half-life of >1 h. Accordingly, Lek 157 significantly decreases the MIC of ampicillin for E. cloacae P99, a constitutive class C beta-lactamase overproducer. With the other serine beta-lactamases tested, the covalent adducts exhibit a wide range of stabilities, with half-lives ranging from long (>4 h with the TEM-1 class A enzyme), to medium (10 to 20 min with the OXA-10 class D enzyme), to short (0.2 to 0.4 s with the NmcA class A beta-lactamase). By contrast, both carbapenems behave as good substrates of the Bacillus cereus metallo-beta-lactamase (class B). The Streptomyces sp. strain R61 and K15 extracellular DD-peptidases exhibit low levels of sensitivity to both compounds.


Assuntos
Carbapenêmicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de beta-Lactamases , Ampicilina/farmacologia , Carbapenêmicos/química , Interações Medicamentosas , Enterobacter cloacae/enzimologia , Inibidores Enzimáticos/química , Cinética , Testes de Sensibilidade Microbiana , Muramilpentapeptídeo Carboxipeptidase/antagonistas & inibidores , Muramilpentapeptídeo Carboxipeptidase/metabolismo , Penicilinas/farmacologia , Streptomyces/efeitos dos fármacos , Streptomyces/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Antimicrob Agents Chemother ; 45(6): 1868-71, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11353639

RESUMO

CENTA, a chromogenic cephalosporin, is readily hydrolyzed by beta-lactamases of all classes except for the Aeromonas hydrophila metalloenzyme. Although it cannot practically be used for the detection of beta-lactamase-producing strains on agar plates, it should be quite useful for kinetic studies and the detection of the enzymes in crude extracts and chromatographic fractions.


Assuntos
Cefalosporinas , Compostos Cromogênicos , Indicadores e Reagentes , beta-Lactamases/metabolismo , Cinética , Mycobacterium tuberculosis/enzimologia , Pseudomonas aeruginosa/enzimologia , Staphylococcus aureus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA