Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(23): 6844-6849, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38804726

RESUMO

Programmable photonic integrated circuits (PICs) are an increasingly important platform in optical science and engineering. However, current programmable PICs are mostly formed through subtractive fabrication techniques, which limits the reconfigurability of the device and makes prototyping costly and time-consuming. A rewritable PIC architecture can circumvent these drawbacks, where PICs are repeatedly written and erased on a single PIC canvas. We demonstrate such a rewritable PIC platform by selective laser writing a layer of wide-band-gap phase change material (PCM) Sb2S3 with a low-cost benchtop setup. We show arbitrary patterning with resolution up to 300 nm and write dielectric assisted waveguides with a low optical loss of 0.0172 dB/µm. We envision that using this inexpensive benchtop platform thousands of PIC designs can be written, tested, and erased on the same chip without the need for lithography/etching tools or a nanofabrication facility, thus reducing manufacturing cost and increasing accessibility.

2.
ACS Nano ; 18(17): 11245-11256, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38639708

RESUMO

Active metasurfaces with tunable subwavelength-scale nanoscatterers are promising platforms for high-performance spatial light modulators (SLMs). Among the tuning methods, phase-change materials (PCMs) are attractive because of their nonvolatile, threshold-driven, and drastic optical modulation, rendering zero-static power, crosstalk immunity, and compact pixels. However, current electrically controlled PCM-based metasurfaces are limited to global amplitude modulation, which is insufficient for SLMs. Here, an individual-pixel addressable, transmissive metasurface is experimentally demonstrated using the low-loss PCM Sb2Se3 and doped silicon nanowire heaters. The nanowires simultaneously form a diatomic metasurface, supporting a high-quality-factor (∼406) quasi-bound-state-in-the-continuum mode. A global phase-only modulation of ∼0.25π (∼0.2π) in simulation (experiment) is achieved, showing ten times enhancement. A 2π phase shift is further obtained using a guided-mode resonance with enhanced light-Sb2Se3 interaction. Finally, individual-pixel addressability and SLM functionality are demonstrated through deterministic multilevel switching (ten levels) and tunable far-field beam shaping. Our work presents zero-static power transmissive phase-only SLMs, enabled by electrically controlled low-loss PCMs and individual meta-molecule addressable metasurfaces.

3.
Nano Lett ; 24(10): 3150-3156, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477059

RESUMO

Miniaturized photodetectors are becoming increasingly sought-after components for next-generation technologies, such as autonomous vehicles, integrated wearable devices, or gadgets embedded on the Internet of Things. A major challenge, however, lies in shrinking the device footprint while maintaining high efficiency. This conundrum can be solved by realizing a nontrivial relation between the energy and momentum of photons, such as dispersion-free devices, known as flat bands. Here, we leverage flat-band meta-optics to simultaneously achieve critical absorption over a wide range of incidence angles. For a monolithic silicon meta-optical photodiode, we achieved an ∼10-fold enhancement in the photon-to-electron conversion efficiency. Such enhancement over a large angular range of ∼36° allows incoming light to be collected via a large-aperture lens and focused on a compact photodiode, potentially enabling high-speed and low-light operation. Our research unveils new possibilities for creating compact and efficient optoelectronic devices with far-reaching impact on various applications, including augmented reality and light detection and ranging.

4.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

5.
Nat Commun ; 15(1): 1662, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395983

RESUMO

Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12 µm). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA