Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Immunity ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38697119

RESUMO

Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.

2.
Proteomics ; : e2300292, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676470

RESUMO

The cuticles of arthropods provide an interface between the organism and its environment. Thus, the cuticle's structure influences how the organism responds to and interacts with its surroundings. Here, we used label-free quantification proteomics to provide a proteome of the moulted cuticle of the aquatic crustacean Daphnia magna, which has long been a prominent subject of studies on ecology, evolution, and developmental biology. We detected a total of 278 high-confidence proteins. Using protein sequence domain and functional enrichment analyses, we identified chitin-binding structural proteins and chitin-modifying enzymes as the most abundant protein groups in the cuticle proteome. Structural cuticular protein families showed a similar distribution to those found in other arthropods and indicated proteins responsible for the soft and flexible structure of the Daphnia cuticle. Finally, cuticle protein genes were also clustered as tandem gene arrays in the D. magna genome. The cuticle proteome presented here will be a valuable resource to the Daphnia research community, informing genome annotations and investigations on diverse topics such as the genetic basis of interactions with predators and parasites.

3.
Cells ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667311

RESUMO

Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified as a yet unknown potential actin-binding protein. We validated this interaction using immunoprecipitation and analyzed the functional relation between slug and actin. Since both proteins have been reported to be involved in DNA double-strand break (DSB) repair, we focused on their interaction during this process after treatment with doxorubicin or UV irradiation. Confocal microscopy elicits that the overexpression of actin fused to an NLS stabilizes complexes of slug and γH2AX, an early marker of DNA damage repair.


Assuntos
Actinas , Ligação Proteica , Fatores de Transcrição da Família Snail , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Actinas/metabolismo , Humanos , Núcleo Celular/metabolismo , Histonas/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Reparo do DNA , Doxorrubicina/farmacologia , Quebras de DNA de Cadeia Dupla , Raios Ultravioleta , Animais
4.
Proteomics ; : e2300616, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419139

RESUMO

Human testicular peritubular cells (HTPCs) are smooth muscle cells, which in the testis form a small compartment surrounding the seminiferous tubules. Contractions of HTPCs are responsible for sperm transport, HTPCs contribute to spermatogenesis, have immunological roles and are a site of glucocorticoid receptor expression. Importantly, HTPCs maintain their characteristics in vitro, and thus can serve as an experimental window into the male gonad. Previously we reported consequences of 3-day treatment with Dexamethasone (Dex), a synthetic glucocorticoid and multi-purpose anti-inflammatory drug. However, as glucocorticoid therapies in man often last longer, we now studied consequences of a prolonged 7-day exposure to 1 µM Dex. Combining live cell imaging with quantative proteomics of samples taken from men, we confirmed our recent findings but more importantly, found numerous novel proteomic alterations induced by prolonged Dex treatment. The comparison of the 7-day treatment with the 3-day treatment dataset revealed that extracellular matrix- and focal adhesion-related proteins become more prominent after 7 days of treatment. In contrast, extended stimulation is, for example, associated with a decrease of proteins related to cholesterol and steroid metabolism. Our dataset, which describes phenotypic and proteomic alterations, is a valuable resource for further research projects investigating effects of Dex on human testicular cells.

5.
Genomics ; 116(2): 110780, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211822

RESUMO

The embryonic development of the pig comprises a long in utero pre- and peri-implantation development, which dramatically differs from mice and humans. During this peri-implantation period, a complex series of paracrine signals establishes an intimate dialogue between the embryo and the uterus. To better understand the biology of the pig blastocyst during this period, we generated a large dataset of single-cell RNAseq from early and hatched blastocysts, spheroid and ovoid conceptus and proteomic datasets from corresponding uterine fluids. Our results confirm the molecular specificity and functionality of the three main cell populations. We also discovered two previously unknown subpopulations of the trophectoderm, one characterised by the expression of LRP2, which could represent progenitor cells, and the other, expressing pro-apoptotic markers, which could correspond to the Rauber's layer. Our work provides new insights into the biology of these populations, their reciprocal functional interactions, and the molecular dialogue with the maternal uterine environment.


Assuntos
Blastocisto , Proteômica , Gravidez , Humanos , Feminino , Suínos , Camundongos , Animais , Blastocisto/metabolismo , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica
6.
Proteomics ; 24(10): e2300384, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38185761

RESUMO

The alpha7 nicotinic acetylcholine receptor (α7 nAChR; CHRNA7) is expressed in the nervous system and in non-neuronal tissues. Within the central nervous system, it is involved in various cognitive and sensory processes such as learning, attention, and memory. It is also expressed in the cerebellum, where its roles are; however, not as well understood as in the other brain regions. To investigate the consequences of absence of CHRNA7 on the cerebellum proteome, we performed a quantitative nano-LC-MS/MS analysis of samples from CHRNA7 knockout (KO) mice and corresponding wild type (WT) controls. Liver, an organ which does not express this receptor, was analyzed, in comparison. While the liver proteome remained relatively unaltered (three proteins more abundant in KOs), 90 more and 20 less abundant proteins were detected in the cerebellum proteome of the KO mice. The gene ontology analysis of the differentially abundant proteins indicates that the absence of CHRNA7 leads to alterations in the glutamatergic system and myelin sheath in the cerebellum. In conclusion, our dataset provides new insights in the role of CHRNA7 in the cerebellum, which may serve as a basis for future in depth-investigations.


Assuntos
Cerebelo , Camundongos Knockout , Proteoma , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Cerebelo/metabolismo , Proteoma/metabolismo , Proteoma/análise , Camundongos , Espectrometria de Massas em Tandem , Fígado/metabolismo , Cromatografia Líquida/métodos , Proteômica/métodos
7.
J Hazard Mater ; 465: 133280, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141312

RESUMO

Due to global pollution derived from plastic waste, the research on microplastics is of increasing public interest. Until now, most studies addressing the effect of microplastic particles on vertebrate cells have primarily utilized polystyrene particles (PS). Other studies on polymer microparticles made, e.g., of polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), or poly (ethylene terephthalate) (PET), cannot easily be directly compared to these PS studies, since the used microparticles differ widely in size and surface features. Here, effects caused by pristine microparticles of a narrow size range between 1 - 4 µm from selected conventional polymers including PS, PE, and PVC, were compared to those of particles made of polymers derived from biological sources like polylactic acid (PLA), and cellulose acetate (CA). The microparticles were used to investigate cellular uptake and assess cytotoxic effects on murine macrophages and epithelial cells. Despite differences in the particles' properties (e.g. ζ-potential and surface morphology), macrophages were able to ingest all tested particles, whereas epithelial cells ingested only the PS-based particles, which had a strong negative ζ-potential. Most importantly, none of the used model polymer particles exhibited significant short-time cytotoxicity, although the general effect of environmentally relevant microplastic particles on organisms requires further investigation.


Assuntos
Polímeros , Poluentes Químicos da Água , Animais , Camundongos , Microplásticos , Plásticos , Poliestirenos , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
8.
J Biol Chem ; 300(1): 105581, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141765

RESUMO

Metastasis still accounts for 90% of all cancer-related death cases. An increase of cellular mobility and invasive traits of cancer cells mark two crucial prerequisites of metastasis. Recent studies highlight the involvement of the endolysosomal cation channel TRPML1 in cell migration. Our results identified a widely antimigratory effect upon loss of TRPML1 function in a panel of cell lines in vitro and reduced dissemination in vivo. As mode-of-action, we established TRPML1 as a crucial regulator of cytosolic calcium levels, actin polymerization, and intracellular trafficking of two promigratory proteins: E-cadherin and ß1-integrin. Interestingly, KO of TRPML1 differentially interferes with the recycling process of E-cadherin and ß1-integrin in a cell line-dependant manner, while resulting in the same phenotype of decreased migratory and adhesive capacities in vitro. Additionally, we observed a coherence between reduction of E-cadherin levels at membrane site and phosphorylation of NF-κB in a ß-catenin/p38-mediated manner. As a result, an E-cadherin/NF-κB feedback loop is generated, regulating E-cadherin expression on a transcriptional level. Consequently, our findings highlight the role of TRPML1 as a regulator in migratory processes and suggest the ion channel as a suitable target for the inhibition of migration and invasion.


Assuntos
Caderinas , Movimento Celular , Integrina beta1 , Neoplasias , Canais de Potencial de Receptor Transitório , Caderinas/metabolismo , Linhagem Celular Tumoral , Integrina beta1/metabolismo , Neoplasias/metabolismo , NF-kappa B , Humanos , Lisossomos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Camundongos , Cálcio/metabolismo , Transporte Proteico
9.
Mol Cell ; 83(23): 4290-4303.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951216

RESUMO

Reactive aldehydes are abundant endogenous metabolites that challenge homeostasis by crosslinking cellular macromolecules. Aldehyde-induced DNA damage requires repair to prevent cancer and premature aging, but it is unknown whether cells also possess mechanisms that resolve aldehyde-induced RNA lesions. Here, we establish photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL) as a model system to study RNA crosslinking damage in the absence of confounding DNA damage in human cells. We find that such RNA damage causes translation stress by stalling elongating ribosomes, which leads to collisions with trailing ribosomes and activation of multiple stress response pathways. Moreover, we discovered a translation-coupled quality control mechanism that resolves covalent RNA-protein crosslinks. Collisions between translating ribosomes and crosslinked mRNA-binding proteins trigger their modification with atypical K6- and K48-linked ubiquitin chains. Ubiquitylation requires the E3 ligase RNF14 and leads to proteasomal degradation of the protein adduct. Our findings identify RNA lesion-induced translational stress as a central component of crosslinking damage.


Assuntos
RNA , Ubiquitina , Humanos , RNA/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Ribossomos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Aldeídos , Biossíntese de Proteínas
10.
Front Cell Dev Biol ; 11: 1236243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664457

RESUMO

Bisphenol A (BPA) exposure is associated with a plethora of neurodevelopmental abnormalities and brain disorders. Previous studies have demonstrated BPA-induced perturbations to critical neural stem cell (NSC) characteristics, such as proliferation and differentiation, although the underlying molecular mechanisms remain under debate. The present study evaluated the effects of a repeated-dose exposure of environmentally relevant BPA concentrations during the in vitro 3D neural induction of human induced pluripotent stem cells (hiPSCs), emulating a chronic exposure scenario. Firstly, we demonstrated that our model is suitable for NSC differentiation during the early stages of embryonic brain development. Our morphological image analysis showed that BPA exposure at 0.01, 0.1 and 1 µM decreased the average spheroid size by day 21 (D21) of the neural induction, while no effect on cell viability was detected. No alteration to the rate of the neural induction was observed based on the expression of key neural lineage and neuroectodermal transcripts. Quantitative proteomics at D21 revealed several differentially abundant proteins across all BPA-treated groups with important functions in NSC proliferation and maintenance (e.g., FABP7, GPC4, GAP43, Wnt-8B, TPPP3). Additionally, a network analysis demonstrated alterations to the glycolytic pathway, potentially implicating BPA-induced changes to glycolytic signalling in NSC proliferation impairments, as well as the pathophysiology of brain disorders including intellectual disability, autism spectrum disorders, and amyotrophic lateral sclerosis (ALS). This study enhances the current understanding of BPA-related NSC aberrations based mostly on acute, often high dose exposures of rodent in vivo and in vitro models and human GWAS data in a novel human 3D cell-based model with real-life scenario relevant prolonged and low-level exposures, offering further mechanistic insights into the ramifications of BPA exposure on the developing human brain and consequently, later life neurological disorders.

11.
Environ Pollut ; 335: 122359, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37567409

RESUMO

Early embryonic development represents a sensitive time-window during which the foetus might be vulnerable to the exposure of environmental contaminants, potentially leading to heart diseases also later in life. Bisphenol A (BPA), a synthetic chemical widely used in plastics manufacturing, has been associated with heart developmental defects, even in low concentrations. This study aims to investigate the effects of environmentally relevant doses of BPA on developing cardiomyocytes using a human induced pluripotent stem cell (hiPSC)-derived model. Firstly, a 2D in vitro differentiation system to obtain cardiomyocytes from hiPSCs (hiPSC-CMs) have been established and characterised to provide a suitable model for the early stages of cardiac development. Then, the effects of a repeated BPA exposure, starting from the undifferentiated stage throughout the differentiation process, were evaluated. The chemical significantly decreased the beat rate of hiPSC-CMs, extending the contraction and relaxation time in a dose-dependent manner. Quantitative proteomics analysis revealed a high abundance of basement membrane (BM) components (e.g., COL4A1, COL4A2, LAMC1, NID2) and a significant increase in TNNC1 and SERBP1 proteins in hiPSC-CMs treated with BPA. Network analysis of proteomics data supported altered extracellular matrix remodelling and provided a disease-gene association with well-known pathological conditions of the heart. Furthermore, upon hypoxia-reoxygenation challenge, hiPSC-CMs treated with BPA showed higher rate of apoptotic events. Taken together, our results revealed that a long-term treatment, even with low doses of BPA, interferes with hiPSC-CMs functionality and alters the surrounding cellular environment, providing new insights about diseases that might arise upon the toxin exposure. Our study contributes to the current understanding of BPA effects on developing human foetal cardiomyocytes, in correlation with human clinical observations and animal studies, and it provides a suitable model for New Approach Methodologies (NAMs) for environmental chemical hazard and risk assessment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular
12.
Mol Hum Reprod ; 29(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37610352

RESUMO

The cation channel 'transient receptor potential vanilloid 2' (TRPV2) is activated by a broad spectrum of stimuli, including mechanical stretch, endogenous and exogenous chemical compounds, hormones, growth factors, reactive oxygen species, and cannabinoids. TRPV2 is known to be involved in inflammatory and immunological processes, which are also of relevance in the ovary. Yet, neither the presence nor possible roles of TRPV2 in the ovary have been investigated. Data mining indicated expression, for example, in granulosa cells (GCs) of the human ovary in situ, which was retained in cultured GCs derived from patients undergoing medical reproductive procedures. We performed immunohistochemistry of human and rhesus monkey ovarian sections and then cellular studies in cultured GCs, employing the preferential TRPV2 agonist cannabidiol (CBD). Immunohistochemistry showed TRPV2 staining in GCs of large antral follicles and corpus luteum but also in theca, endothelial, and stromal cells. TRPV2 transcript and protein levels increased upon administration of hCG or forskolin. Acutely, application of the agonist CBD elicited transient Ca2+ fluxes, which was followed by the production and secretion of several inflammatory factors, especially COX2, IL6, IL8, and PTX3, in a time- and dose-dependent manner. CBD interfered with progesterone synthesis and altered both the proteome and secretome, as revealed by a proteomic study. While studies are somewhat hampered by the lack of highly specific TRPV2 agonist or antagonists, the results pinpoint TRPV2 as a modulator of inflammation with possible roles in human ovarian (patho-)physiology. Finally, as TRPV2 is activated by cannabinoids, their possible ovarian actions should be further evaluated.


Assuntos
Canabidiol , Ovário , Feminino , Humanos , Proteômica , Células da Granulosa , Corpo Lúteo , Canabidiol/farmacologia , Canais de Cátion TRPV/genética
13.
Mol Metab ; 75: 101768, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414142

RESUMO

OBJECTIVE: To gain mechanistic insights into adverse effects of maternal hyperglycemia on the liver of neonates, we performed a multi-omics analysis of liver tissue from piglets developed in genetically diabetic (mutant INS gene induced diabetes of youth; MIDY) or wild-type (WT) pigs. METHODS: Proteome, metabolome and lipidome profiles of liver and clinical parameters of serum samples from 3-day-old WT piglets (n = 9) born to MIDY mothers (PHG) were compared with those of WT piglets (n = 10) born to normoglycemic mothers (PNG). Furthermore, protein-protein interaction network analysis was used to reveal highly interacting proteins that participate in the same molecular mechanisms and to relate these mechanisms with human pathology. RESULTS: Hepatocytes of PHG displayed pronounced lipid droplet accumulation, although the abundances of central lipogenic enzymes such as fatty acid-synthase (FASN) were decreased. Additionally, circulating triglyceride (TG) levels were reduced as a trend. Serum levels of non-esterified free fatty acids (NEFA) were elevated in PHG, potentially stimulating hepatic gluconeogenesis. This is supported by elevated hepatic phosphoenolpyruvate carboxykinase (PCK1) and circulating alanine transaminase (ALT) levels. Even though targeted metabolomics showed strongly elevated phosphatidylcholine (PC) levels, the abundances of multiple key enzymes involved in major PC synthesis pathways - most prominently those from the Kennedy pathway - were paradoxically reduced in PHG liver. Conversely, enzymes involved in PC excretion and breakdown such as PC-specific translocase ATP-binding cassette 4 (ABCB4) and phospholipase A2 were increased in abundance. CONCLUSIONS: Our study indicates that maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of neonatal offspring. In particular, we found evidence for stimulated gluconeogenesis and hepatic lipid accumulation independent of de novo lipogenesis. Reduced levels of PC biosynthesis enzymes and increased levels of proteins involved in PC translocation or breakdown may represent counter-regulatory mechanisms to maternally elevated PC levels. Our comprehensive multi-omics dataset provides a valuable resource for future meta-analysis studies focusing on liver metabolism in newborns from diabetic mothers.


Assuntos
Diabetes Gestacional , Hiperglicemia , Recém-Nascido , Gravidez , Feminino , Animais , Humanos , Suínos , Adolescente , Glucose/metabolismo , Metabolismo dos Lipídeos , Aminoácidos/metabolismo , Multiômica , Fígado/metabolismo , Hiperglicemia/metabolismo
14.
Reproduction ; 166(3): 221-234, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432973

RESUMO

In brief: Nicotinic acetylcholine receptor alpha 7 (nAChRa7), encoded by Chrna7, is expressed by various murine ovarian cells. Morphological and molecular investigations, including a proteomic study of adult Chrna7 knockout (KO) mouse ovaries, reveal the roles of these receptors in the local regulation of the ovary. Abstract: Nicotinic acetylcholine receptor alpha 7 (nAChRa7), encoded by Chrna7, is involved in cellular functions ranging from synaptic transmission in neurons to regulation of inflammation, cell growth and metabolism to cell death in other cells. Our qPCR results and other studies indicated that nAChRa7 is expressed in the adult mouse ovary, while in situ hybridization and single-cell sequencing data suggested this expression may be shared by several ovarian cells, including fibroblast-like and steroidogenic stroma cells, macrophages and oocytes of small follicles. To explore a possible involvement of nAChRa7 in ovarian functions, we evaluated ovarian morphology of Chrna7-null mutant adult mice (KO) and wildtype mice (WT; 3 months, metestrus) by performing immunohistochemistry, qPCR studies, measurements of serum progesterone and proteomic analyses. The evaluation of serial sections indicated fewer primordial follicles but similar numbers of primary, secondary and tertiary follicles, as well as corpora lutea in KO and WT mice. Atresia was unchanged. Serum progesterone and mRNA levels of proliferation and most apoptosis markers were not changed, yet two typical macrophage markers were elevated. Furthermore, the proteomes of KO ovaries were significantly altered with 96 proteins increased and 32 decreased in abundance in KOs compared to WTs. Among the elevated proteins were markers for stroma cells. Hence, the lack of nAChRa7 causes changes in small follicle counts and alterations of the ovarian stroma cells. The ovarian phenotype of Chrna7 mutant mice links this channel protein to the local regulation of ovarian cells, including stroma cells.


Assuntos
Ovário , Receptores Nicotínicos , Animais , Feminino , Camundongos , Camundongos Knockout , Ovário/metabolismo , Fenótipo , Progesterona/metabolismo , Proteômica , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(29): e2301250120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428903

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.


Assuntos
Distrofia Muscular de Duchenne , Animais , Suínos , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Proteoma/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Músculo Esquelético/metabolismo , Éxons/genética
16.
Front Mol Biosci ; 10: 1196083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457829

RESUMO

Introduction: Alzheimer's disease (AD) and aging are associated with platelet hyperactivity. However, the mechanisms underlying abnormal platelet function in AD and aging are yet poorly understood. Methods: To explore the molecular profile of AD and aged platelets, we investigated platelet activation (i.e., CD62P expression), proteome and transcriptome in AD patients, non-demented elderly, and young individuals as controls. Results: AD, aged and young individuals showed similar levels of platelet activation based on CD62P expression. However, AD and aged individuals had a proteomic signature suggestive of increased platelet activation compared with young controls. Transcriptomic profiling suggested the dysregulation of proteolytic machinery involved in regulating platelet function, particularly the ubiquitin-proteasome system in AD and autophagy in aging. The functional implication of these transcriptomic alterations remains unclear and requires further investigation. Discussion: Our data strengthen the evidence of enhanced platelet activation in aging and provide a first glimpse of the platelet transcriptomic changes occurring in AD.

17.
J Neuroendocrinol ; : e13277, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37160285

RESUMO

Growth hormone receptor deficiency (GHRD) results in low serum insulin-like growth factor 1 (IGF1) and high, but non-functional serum growth hormone (GH) levels in human Laron syndrome (LS) patients and animal models. This study investigated the quantitative histomorphological and molecular alterations associated with GHRD. Pituitary glands from 6 months old growth hormone receptor deficient (GHR-KO) and control pigs were analyzed using a quantitative histomorphological approach in paraffin (9 GHR-KO [5 males, 4 females] vs. 11 controls [5 males, 6 females]), ultrathin sections tissue sections (3 male GHR-KO vs. 3 male controls) and label-free proteomics (4 GHR-KO vs. 4 control pigs [2 per sex]). GHR-KO pigs displayed reduced body weights (60% reduction in comparison to controls; p < .0001) and decreased pituitary volumes (54% reduction in comparison to controls; p < .0001). The volume proportion of the adenohypophysis did not differ in GHR-KO and control pituitaries (65% vs. 71%; p = .0506) and GHR-KO adenohypophyses displayed a reduced absolute volume but an unaltered volume density of somatotrophs in comparison to controls (21% vs. 18%; p = .3164). In GHR-KO pigs, somatotroph cells displayed a significantly reduced volume density of granules (23.5%) as compared to controls (67.7%; p < .0001). Holistic proteome analysis of adenohypophysis samples identified 4660 proteins, of which 592 were differentially abundant between the GHR-KO and control groups. In GHR-KO samples, the abundance of somatotropin precursor was decreased, whereas increased abundances of proteins involved in protein production, transport and endoplasmic reticulum (ER) stress were revealed. Increased protein production and secretion as well as significantly reduced proportion of GH-storing granules in somatotroph cells of the adenohypophysis without an increase in volume density of somatotroph cells in the adenohypophysis could explain elevated serum GH levels in GHR-KO pigs.

18.
Nat Commun ; 14(1): 2730, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169754

RESUMO

In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by Otu2 upon ribosomal subunit recycling. Despite its importance for translation efficiency the exact role and structural basis for this translational reset is poorly understood. Here, structural analysis by cryo-electron microscopy of native and reconstituted Otu2-bound ribosomal complexes reveals that Otu2 engages 40S subunits mainly between ribosome recycling and initiation stages. Otu2 binds to several sites on the intersubunit surface of the 40S that are not occupied by any other 40S-binding factors. This binding mode explains the discrimination against 80S ribosomes via the largely helical N-terminal domain of Otu2 as well as the specificity for mono-ubiquitinated eS7 on 40S. Collectively, this study reveals mechanistic insights into the Otu2-driven deubiquitination steps for translational reset during ribosome recycling/(re)initiation.


Assuntos
Proteínas Ribossômicas , Ribossomos , Microscopia Crioeletrônica , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/metabolismo
20.
ZFA (Stuttgart) ; 99(2): 66, 2023.
Artigo em Alemão | MEDLINE | ID: mdl-37022316

RESUMO

[This corrects the article DOI: 10.1007/s44266-023-00027-1.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA