Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005674

RESUMO

Herein, the ability of highly porous colorimetric indicators to sense volatile and biogenic amine vapors in real time is presented. Curcumin-loaded polycaprolactone porous fiber mats are exposed to various concentrations of off-flavor compounds such as the volatile amine trimethylamine, and the biogenic amines cadaverine, putrescine, spermidine, and histamine, in order to investigate their colorimetric response. CIELAB color space analysis demonstrates that the porous fiber mats can detect the amine vapors, showing a distinct color change in the presence of down to 2.1 ppm of trimethylamine and ca. 11.0 ppm of biogenic amines, surpassing the limit of visual perception in just a few seconds. Moreover, the color changes are reversible either spontaneously, in the case of the volatile amines, or in an assisted way, through interactions with an acidic environment, in the case of the biogenic amines, enabling the use of the same indicator several times. Finally, yet importantly, the strong antioxidant activity of the curcumin-loaded fibers is successfully demonstrated through DPPH● and ABTS● radical scavenging assays. Through such a detailed study, we prove that the developed porous mats can be successfully established as a reusable smart system in applications where the rapid detection of alkaline vapors and/or the antioxidant activity are essential, such as food packaging, biomedicine, and environmental protection.


Assuntos
Antioxidantes , Curcumina , Colorimetria , Aminas Biogênicas/análise , Polímeros
2.
Langmuir ; 39(22): 7793-7803, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231662

RESUMO

An effective and sustainable approach to deal with the scarcity of freshwater is interfacial solar-driven evaporation. Nonetheless, some serious challenges for photothermal materials still need to be considered, such as long-term stability in harsh environments, eco-friendly materials, and cost-effective and simple fabrication processes. Keeping these points in mind, we present a multifunctional silver-coated vegetable waste biocomposite cryogel that not only exhibits high porosity and enhanced wettability and stability but also possesses high light absorption and low thermal conductivity favorable for heat localization, solar steam generation, and efficient photothermal conversion efficiency. The achieved solar evaporation rate is 1.17 kg m-2 h-1 with a solar-to-vapor conversion efficiency of 81.11% under 1 Sun irradiation. The developed material is able to effectively desalinate artificial seawater and decontaminate synthetic wastewater (e.g., water containing dye molecules and mercury ions) with an efficiency of >99%. Most importantly, the composite cryogel presents antifouling properties, and in particular, salt antifouling ability and anti-biofouling properties. Thus, the numerous functionalities of the biocomposite cryogel make it a cost-effective promising device for prolonged water decontamination processes.

3.
Polymers (Basel) ; 14(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236076

RESUMO

This review explores the colorimetric indicators based on anthocyanin polymer composites fabricated in the last decade, in order to provide a comprehensive overview of their morphological and compositional characteristics and their efficacy in their various application fields. Notably, the structural properties of the developed materials and the effect on their performance will be thoroughly and critically discussed in order to highlight their important role. Finally, yet importantly, the current challenges and the future perspectives of the use of anthocyanins as components of colorimetric indicator platforms will be highlighted, in order to stimulate the exploration of new anthocyanin sources and the in-depth investigation of all the possibilities that they can offer. This can pave the way for the development of high-end materials and the expansion of their use to new application fields.

4.
Nanomaterials (Basel) ; 12(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35745286

RESUMO

Sub-micrometer particles derived from the fragmentation of plastics in the environment can enter the food chain and reach humans, posing significant health risks. To date, there is a lack of adequate toxicological assessment of the effects of nanoplastics (NPs) in mammalian systems, particularly in humans. In this work, we evaluated the potential toxic effects of three different NPs in vitro: two NPs obtained by laser ablation (polycarbonate (PC) and polyethylene terephthalate (PET1)) and one (PET2) produced by nanoprecipitation. The physicochemical characterization of the NPs showed a smaller size, a larger size distribution, and a higher degree of surface oxidation for the particles produced by laser ablation. Toxicological evaluation performed on human cell line models (HePG2 and Caco-2) showed a higher toxic effect for the particles synthesized by laser ablation, with PC more toxic than PET. Interestingly, on differentiated Caco-2 cells, a conventional intestinal barrier model, none of the NPs produced toxic effects. This work wants to contribute to increase knowledge on the potential risks posed by NPs.

5.
ACS Appl Bio Mater ; 5(6): 2880-2893, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35583459

RESUMO

Malva sylvestris (MS) is a medicinal herb known worldwide for its beneficial effects due to the several active molecules present in its leaves and flowers. These compounds have shown antioxidant and anti-inflammatory properties and thus can be helpful in treatments of burns and chronic wounds, characterized mainly by high levels of free radicals and impairments of the inflammatory response. In this work, we propose bilayer films as wound dressings, based on poly(vinylpyrrolidone) (PVP) and sodium alginate loaded with M. sylvestris extracts from leaves and flowers and fabricated by combining solvent-casting and rod-coating methods. The top layer is produced in two different PVP/alginate ratios and loaded with the MS flowers' extract, while the bottom layer is composed of PVP and MS leaves' extract. The bilayers were characterized morphologically, chemically, and mechanically, while they showed superior self-adhesive properties on human skin compared to a commercial skin patch. The materials showed antioxidant activity, release of the bioactive compounds, and water uptake property. Moreover, the anthocyanin content of the flower extract provided the films with the ability to change color when immersed in buffers of different pH levels. In vitro tests using primary keratinocytes demonstrated the biocompatibility of the MS bilayer materials and their capacity to enhance the proliferation of the cells in a wound scratch model. Finally, the best performing MS bilayer sample with a PVP/alginate ratio of 70:30 was evaluated in mice models, showing suitable resorption properties and the capacity to reduce the level of inflammatory mediators in UVB-induced burns when applied to an open wound. These outcomes suggest that the fabricated bilayer films loaded with M. sylvestris extracts are promising formulations as active and multifunctional dressings for treating skin disorders.


Assuntos
Queimaduras , Malva , Adesivos , Alginatos , Animais , Antioxidantes/farmacologia , Bandagens , Malva/química , Camundongos , Extratos Vegetais/farmacologia , Cimentos de Resina
6.
ACS Appl Mater Interfaces ; 13(26): 30542-30555, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156821

RESUMO

This paper reports the fabrication of photothermal cryogels for freshwater production via the solar-driven evaporation of seawater. Photothermal cryogels were prepared via in situ oxidative polymerization of pyrrole with ammonium persulfate on preformed poly(sodium acrylate) (PSA) cryogels. We found that the pyrrole concentration used in the fabrication process has a significant effect on the final PSA/PPy cryogels (PPCs), causing the as-formed polypyrrole (PPy) layer on the PPC to evolve from nanoparticles to lamellar sheets and to consolidated thin films. PPC fabricated using the lowest pyrrole concentration (i.e., PPC10) displays the best solar-evaporation efficiency compared to the other samples, which is further improved by switching the operative mode from floating to standing. Specifically, in the latter case, the apparent solar evaporation rate and solar-to-vapor conversion efficiency reach 1.41 kg m-2 h-1 and 96.9%, respectively, due to the contribution of evaporation from the exposed lateral surfaces. The distillate obtained from the condensed vapor, generated via solar evaporation of a synthetic seawater through PPC10, shows an at least 99.99% reduction of Na while all the other elements are reduced to a subppm level. We attribute the superior solar evaporation and desalination performance of PPC10 to its (i) higher photoabsorption efficiency, (ii) higher heat localization effect, (iii) open porous structure that facilitates vapor removal, (iv) rough pore surface that increases the surface area for light absorption and water evaporation, and (v) higher water-absorption capacity to ensure efficient water replenishment to the evaporative sites. It is anticipated that the gained know-how from this study would offer insightful guidelines to better designs of polymer-based 3D photothermal materials for solar evaporation as well as for other emerging solar-related applications.

7.
Polymers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809649

RESUMO

A photocatalytic system for the degradation of aqueous organic pollutants under visible light irradiation is obtained by an innovative approach based on ceria/platinum (Pt) hybrid nanoclusters on cellulose acetate fibrous membranes. The catalytic materials are fabricated by supersonic beam deposition of Pt nanoclusters directly on the surface of electrospun cellulose acetate fibrous mats, pre-loaded with a cerium salt precursor that is transformed into ceria nanoparticles directly in the solid mats by a simple thermal treatment. The presence of Pt enhances the oxygen vacancies on the surface of the formed ceria nanoparticles and reduces their band gap, resulting in a significant improvement of the photocatalytic performance of the composite mats under visible light irradiation. Upon the appropriate pretreatment and visible light irradiation, we prove that the most efficient mats, with both ceria nanoparticles and Pt nanoclusters, present a degradation efficiency of methylene blue of 70% and a photodegradation rate improved by about five times compared to the ceria loaded samples, without Pt. The present results bring a significant improvement of the photocatalytic performance of polymeric nanocomposite fibrous systems under visible light irradiation, for efficient wastewater treatment applications.

8.
Environ Pollut ; 271: 116262, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360657

RESUMO

In recent years, many studies are focusing on the negative effects of plastic pollution, and in particular on the nanosized plastic fragments and their implications on the environment and human health. Nanoplastics in the environment interact with a great number of substances, many of which are dangerous to humans, but the interaction mechanisms, the complexes formation processes, and their biological impact are still poorly understood. Here we report a study on the interactions of polyethylene terephthalate nanoplastics, produced by laser ablation, with three different types of contaminants: glyphosate, levofloxacin and Hg2+ ions, and we demonstrate that the nanoplastics form complexes with all three contaminants through their favorable binding. Most importantly, this study highlights that to demonstrate the overall effect of the nanoplastics internalized by cells in vitro, it is important to combine alternative methodologies, such as metabolomics, with standard biological assays (i.e., cell viability and ROS production). In this way it becomes possible to better understand the body's response to this new class of pollutants and their possible chronic toxicity. Summary: PET nanoplastics, fabricated by laser ablation, interact with aqueous pollutants forming nanoclusters. The nanoclusters affect the cells metabolism, suggesting long-term risks.


Assuntos
Microplásticos , Poluentes Químicos da Água , Poluição Ambiental , Humanos , Plásticos/toxicidade , Polietilenotereftalatos , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-33261100

RESUMO

The exposure of humans to nano-and microplastic particles (NMPs) is an issue recognized as a potential health hazard by scientists, authorities, politics, non-governmental organizations and the general public. The concentration of NMPs in the environment is increasing concomitantly with global plastic production and the usage of plastic materials. NMPs are detectable in numerous aquatic organisms and also in human samples, therefore necessitating a risk assessment of NMPs for human health. So far, a comprehensive risk assessment of NMPs is hampered by limited availability of appropriate reference materials, analytical obstacles and a lack of definitions and standardized study designs. Most studies conducted so far used polystyrene (PS) spheres as a matter of availability, although this polymer type accounts for only about 7% of total plastic production. Differently sized particles, different concentration and incubation times, and various biological models have been used, yielding hardly comparable data sets. Crucial physico-chemical properties of NMPs such as surface (charge, polarity, chemical reactivity), supplemented additives and adsorbed chemicals have been widely excluded from studies, although in particular the surface of NMPs determines the interaction with cellular membranes. In this manuscript we give an overview about the critical parameters which should be considered when performing risk assessments of NMPs, including novel reference materials, taking into account surface modifications (e.g., reflecting weathering processes), and the possible role of NMPs as a substrate and/or carrier for (pathogenic) microbes. Moreover, we make suggestions for biological model systems to evaluate immediate toxicity, long-term effects and the potential of NMPs to cross biological barriers. We are convinced that standardized reference materials and experimental parameters along with technical innovations in (nano)-particle sampling and analytics are a prerequisite for the successful realization of conclusive human health risk assessments of NMPs.


Assuntos
Plásticos , Poluentes Químicos da Água , Organismos Aquáticos , Humanos , Microplásticos , Nanopartículas/análise , Plásticos/toxicidade , Poliestirenos , Poluentes Químicos da Água/análise
10.
Polymers (Basel) ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316645

RESUMO

A versatile and straightforward route to produce polymer foams with functional surface through their decoration with gold and palladium nanoparticles is proposed. Melamine foams, used as polymeric porous substrates, are first covered with a uniform coating of polydimethylsiloxane, thin enough to assure the preservation of their original porous structure. The polydimethylsiloxane layer allows the facile in-situ formation of metallic Au and Pd nanoparticles with sizes of tens of nanometers directly on the surface of the struts of the foam by the direct immersion of the foams into gold or palladium precursor solutions. The effect of the gold and palladium precursor concentration, as well as the reaction time with the foams, to the amount and sizes of the nanoparticles synthesized on the foams, was studied and the ideal conditions for an optimized functionalization were defined. Gold and palladium contents of about 1 wt.% were achieved, while the nanoparticles were proven to be stably adhered to the foam, avoiding potential risks related to their accidental release.

11.
ACS Appl Mater Interfaces ; 12(9): 10307-10316, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058681

RESUMO

The accelerated increase in freshwater demand, particularly among populations displaced in remote locations where conventional water sources and the infrastructure required to produce potable water may be completely absent, highlights the urgent need in creating additional freshwater supply from untapped alternative sources via energy-efficient solutions. Herein, we present a hydrophilic and self-floating photothermal foam that can generate potable water from seawater and atmospheric moisture via solar-driven evaporation at its interface. Specifically, the foam shows an excellent solar-evaporation rate of 1.89 kg m-2 h-1 with a solar-to-vapor conversion efficiency of 92.7% under 1-Sun illumination. The collected water is shown to be suitable for potable use because when synthetic seawater samples (3.5 wt %) are used, the foam is able to cause at least 99.99% of salinity reduction. The foam can also be repeatedly used in multiple hydration-dehydration cycles, consisting of moisture absorption or water collection, followed by solar-driven evaporation; in each cycle, 1 g of the foam can harvest 250-1770 mg of water. To the best of our knowledge, this is the first report of a material that integrates all the desirable properties for solar evaporation, water collection, and atmospheric-water harvesting. The lightweight and versatility of the foam suggest that the developed foams can be a potent solution for water efficiency, especially for off-grid situations.

12.
ACS Appl Mater Interfaces ; 11(33): 30207-30217, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31389689

RESUMO

Herein, expanded graphite is successfully combined with waterborne polyurethane to develop porous foams with underwater oleophobic properties for the separation of surfactant-free, oil-in-water mixtures and emulsions. To obtain foams with different pore sizes and therefore with different performances in the oil-water filtration process, two solvent-free fabrication processes are adopted. In the first one, the expanded graphite granules are mixed with the waterborne polyurethane (PUEGr), and in the second method, calcium carbonate is introduced to the two-component mixture (PUEGr_t). In both cases, the obtained foams exhibit hydrophilicity and oleophilicity in air and oleophobicity underwater, and they have porous interconnected networks, while their pore size distribution differs significantly. The foams can be used as 3D filters, able to separate, through gravity, surfactant-free, oil-in-water mixtures (10% w/w oil in water) with high oil rejection efficiencies and flow rates that depend on the type of foam. In particular, in the gravity-driven filtration process using 100 mL of the feed liquid, the PUEGr foams have an oil rejection efficiency of 96.85% and flow rate of 9988 L m-2 h-1, while for the PUEGr_t foams the efficiency is higher (99.99%) and the flow rate is lower (8547 L m-2 h-1) due to their smaller pore size. Although the PUEGr_t foams have slower separation performance, they are more efficient for the separation of surfactant-free emulsions (1% w/w oil in water) reaching an oil rejection efficiency of 98.28%, higher than the 95.66% of the PUEGr foams of the same thickness. The foams can be used for several filtration cycles, as well as in harsh conditions without deteriorating their performance. The nature of raw materials, the simple solvent-free preparation method, the effective gravity-driven filtration even in harsh conditions, and their reusability suggest that the herein engineered foams have great potential for practical applications in oil-water separation through highly energy-efficient filtration.

13.
Polymers (Basel) ; 11(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226802

RESUMO

Poly(furfuryl alcohol) (PFA) is a bioresin synthesized from furfuryl alcohol (FA) that is derived from renewable saccharide-rich biomass. In this study, we compounded this bioresin with polycaprolactone (PCL) for the first time, introducing new functional polymer blends. Although PCL is biodegradable, its production relies on petroleum precursors such as cyclohexanone oils. With the method proposed herein, this dependence on petroleum-derived precursors/monomers is reduced by using PFA without significantly modifying some important properties of the PCL. Polymer blend films were produced by simple solvent casting. The blends were characterized in terms of surface topography by atomic force microscopy (AFM), chemical interactions between PCL and PFA by attenuated total reflection-Fourier transform infrared (ATR-FTIR), crystallinity by XRD, thermal properties by differential scanning calorimetry (DSC), and mechanical properties by tensile tests and biocompatibility by direct and indirect toxicity tests. PFA was found to improve the gas barrier properties of PCL without compromising its mechanical properties, and it demonstrated sustained antioxidant effect with excellent biocompatibility. Our results indicate that these new blends can be potentially used in diverse applications ranging from food packing to biomedical devices.

14.
Nanoscale Adv ; 1(11): 4258-4267, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134398

RESUMO

Smart, stimuli-responsive, photoluminescent materials that undergo a visually perceptible emission color change in the presence of an external stimulus have long been attractive for use in sensor platforms. When the stimulus is the presence of water, the materials that undergo changes in their light emission properties are called hydrochromic and they can be used for the development of sensors to detect and quantify the water content in organic solvents, which is fundamental for laboratory safety and numerous industrial applications. Herein, we demonstrate the preparation of structurally different carbon dots with tunable emission wavelengths via a simple carbonization approach under controlled temperature and time, involving commercial brown sugar as a starting material. The detailed experimental analysis reveals the "structure-hydrochromic property" relationship of the carbon dots and assesses their capability as effective water sensors. The carbon dots that were proved most efficient for the specific application were then used to identify the presence of water in various aprotic and protic organic solvents via a sensing mechanism based either on the fluorescence wavelength shift or on the fluorescence intensity enhancement, respectively, attributed to the formation of intermolecular hydrogen bonds between carbon dots and water molecules. This is the first demonstration of structurally defined carbon dots in a specific application. The developed carbon dots, apart from being environmentally friendly, were proved to also be biocompatible, enabling this presented process to be a path to "green" sensors.

15.
Materials (Basel) ; 11(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486345

RESUMO

Superhydrophobic and oleophilic polyurethane foams were obtained by spray-coating their surfaces with solutions of thermoplastic polyurethane and hydrophobic silicon oxide nanoparticles. The developed functionalized foams were exploited as reusable oil absorbents from stable water-in-oil emulsions. These foams were able to remove oil efficiently from a wide range of emulsions with oil contents from 10 to 80 v.%, stabilized using Span80. The modified foams could reach oil absorption capacities up to 29 g/g, becoming a suitable candidate for water-in-oil stable emulsions separation.

16.
ACS Nano ; 12(8): 7690-7700, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29944342

RESUMO

The presence of micro- and nanoplastics in the marine environment is raising strong concerns since they can possibly have a negative impact on human health. In particular, the lack of appropriate methodologies to collect the nanoplastics from water systems imposes the use of engineered model nanoparticles to explore their interactions with biological systems, with results not easily correlated with the real case conditions. In this work, we propose a reliable top-down approach based on laser ablation of polymers to form polyethylene terephthalate (PET) nanoplastics, which mimic real environmental nanopollutants, unlike synthetic samples obtained by colloidal chemistry. PET nanoparticles were carefully characterized in terms of chemical/physical properties and stability in different media. The nanoplastics have a ca. 100 nm average dimension, with significant size and shape heterogeneity, and they present weak acid groups on their surface, similarly to photodegraded PET plastics. Despite no toxic effects emerging by in vitro studies on human Caco-2 intestinal epithelial cells, the formed nanoplastics were largely internalized in endolysosomes, showing intracellular biopersistence and long-term stability in a simulated lysosomal environment. Interestingly, when tested on a model of intestinal epithelium, nano-PET showed high propensity to cross the gut barrier, with unpredictable long-term effects on health and potential transport of dispersed chemicals mediated by the nanopollutants.


Assuntos
Poluentes Ambientais/farmacologia , Lasers , Nanopartículas/química , Polietilenotereftalatos/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Poluentes Ambientais/química , Humanos , Tamanho da Partícula , Polietilenotereftalatos/química , Relação Estrutura-Atividade , Propriedades de Superfície
17.
ACS Appl Mater Interfaces ; 10(18): 16095-16104, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29688691

RESUMO

A new and straightforward single-step route to decorate melamine foams with silver nanoparticles (ME/Ag) is proposed. Uniform coatings of silver nanoparticles with diameters less than 10 nm are formed in situ directly on the struts surface of the foams, after their dipping in an AgNO3 solution. We prove that the nanoparticles are stably adhered on the foams, and that their amount can be directly controlled by the concentration of the AgNO3 solution and the dipping time. Following this production route, ME/Ag foams can be obtained with silver content ranging between 0.2 and 18.6 wt % and excellent antibacterial performance, making them appropriate for various applications. Herein we explore the possibility to use them as antibacterial filters for water treatment, proving that they are able to remove completely Escherichia coli bacteria from water when filtered at flow rates up to 100 mL/h·cm2 due to the release of less than 1 ppm of Ag+ ions by the foams. No bacterial regrowth was observed after further dilution of the treated water, to arrive below the safety threshold of Ag+ for drinking water (0.1 ppm), demonstrating the excellent bactericide performance of the ME/Ag filters.


Assuntos
Triazinas/química , Antibacterianos , Nanopartículas Metálicas , Prata
18.
ACS Omega ; 3(10): 13484-13493, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458057

RESUMO

A photoresponsive microstructured composite is fabricated through the impregnation of cellulosic filter paper (FP) with a spiropyran-modified acrylic polymer. The polymer enwraps uniformly each individual cellulose fiber, increases the thermal stability of cellulose, and ensures the preservation of the composite functionalities even upon removal of the surface layers through mechanical scratching. The photochromic spiropyran moieties of the polymer, even while embedded in the cellulosic sheet, can reversibly interconvert between the colorless spiropyran and the pink merocyanine isomeric states upon irradiation with UV and visible light, respectively. Moreover, the photochromic polymer presents a faster photochromic response and a higher resistance to photodegradation, with an outstanding reusability for more than 100 switching cycles when it is incorporated in the cellulose network. Most importantly, the acidochromism of the modified FP, attributed to the spiropyran molecules after UV activation, allows the real-time optical and visual detection of acidity changes and spoilage in food products, such as wine and milk. Spoilage due to bacterial degradation and oxidation processes generates acidic vapors that induce the protonation of the merocyanine. This results in a visually detectable chromic transition from pink to white of the treated cellulose fibers, corresponding to a blue shift in the absorption spectrum. The developed photoresponsive cellulose composite can serve as cost-effective robust optical component in integrated functional platforms and consumer-friendly indicators for smart food packaging, as well as portable on demand acidoresponsive interfaces for gas monitoring in industrial and environmental applications.

19.
J Environ Manage ; 206: 872-889, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29202435

RESUMO

In the last decade, a continuous increasing research activity is focused on the surface functionalization of polymeric porous materials for the efficient removal of oil contaminants from water. This work reviews the most significant recent studies on the functionalization of polyurethane and melamine foams, materials commonly reported for oil-water separation applications. After the identification of the key features of the foams required to optimize their oil removal performance, a wide variety of physicochemical treatments are described together with their effect on the oil absorption selectivity and oil absorption capacity, both critical parameters for the application of the foams in the remediation of oil spills. The efficiencies of the different functionalization processes on the same type of foams are compared, determining the main advantages and potentialities of each treatment and remediation procedure.


Assuntos
Recuperação e Remediação Ambiental , Poluição por Petróleo , Poliuretanos , Porosidade , Água
20.
ACS Appl Mater Interfaces ; 10(1): 651-659, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29272094

RESUMO

In this study, we report the fabrication of nanocomposites made of titanate nanosheets immobilized in a solid matrix of regenerated silk fibroin as novel heavy-metal-ion removal systems. The capacity of these nanocomposite films to remove lead, mercury, and copper cations from water was investigated, and as shown by the elemental quantitative analysis performed, their removal capacity is 73 mmol/g for all of the ions tested. We demonstrate that the nanocomposites can efficiently retain the adsorbed ions, with no release of titanate nanosheets occurring even after several exposure cycles to ionic solutions, eliminating the risk of release of potentially hazardous nanosubstances to the environment. We also prove that the introduction of sodium ions in the nanocomposite formulation makes the materials highly selective toward the lead ions. The developed biopolymer nanocomposites can be potentially used for the efficient removal of heavy-metal-ion pollutants from water and, thanks to their physical and optical characteristics, offer the possibility to be used in sensor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA