Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766071

RESUMO

Paraneoplastic neurological syndromes arise from autoimmune reactions against nervous system antigens due to a maladaptive immune response to a peripheral cancer. Patients with small cell lung carcinoma or malignant thymoma can develop an autoimmune response against the CV2/collapsin response mediator protein 5 (CRMP5) antigen. For reasons that are not understood, approximately 80% of patients experience painful neuropathies. Here, we investigated the mechanisms underlying anti-CV2/CRMP5 autoantibodies (CV2/CRMP5-Abs)-related pain. We found that patient-derived CV2/CRMP5-Abs can bind to their target in rodent dorsal root ganglia (DRG) and superficial laminae of the spinal cord. CV2/CRMP5-Abs induced DRG neuron hyperexcitability and mechanical hypersensitivity in rats that were abolished by preventing binding to their cognate autoantigen CRMP5. The effect of CV2/CRMP5-Abs on sensory neuron hyperexcitability and mechanical hypersensitivity observed in patients was recapitulated in rats using genetic immunization providing an approach to rapidly identify possible therapeutic choices for treating autoantibody-induced pain including the repurposing of a monoclonal anti-CD20 antibody that selectively deplete B-lymphocytes. These data reveal a previously unknown neuronal mechanism of neuropathic pain in patients with paraneoplastic neurological syndromes resulting directly from CV2/CRMP5-Abs-induced nociceptor excitability. CV2/CRMP5-Abs directly sensitize pain responses by increasing sensory neuron excitability and strategies aiming at either blocking or reducing CV2/CRMP5-Abs can treat pain as a comorbidity in patients with paraneoplastic neurological syndromes.

2.
Proc Natl Acad Sci U S A ; 120(32): e2217800120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498871

RESUMO

Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.


Assuntos
Dor Crônica , Neuralgia , Animais , Hiperalgesia/induzido quimicamente , Dor Crônica/genética , Dor Crônica/terapia , Macaca mulatta/metabolismo , Neuralgia/genética , Neuralgia/terapia , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8
3.
Sci Rep ; 12(1): 8140, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581326

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares
4.
Nucleic Acid Ther ; 32(4): 235-250, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452303

RESUMO

Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aß), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.


Assuntos
Aptâmeros de Nucleotídeos , Príons , Peptídeos beta-Amiloides/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/uso terapêutico , Humanos , Ligantes , Fragmentos de Peptídeos
5.
Sci Transl Med ; 13(619): eabh1314, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757807

RESUMO

The voltage-gated sodium NaV1.7 channel, critical for sensing pain, has been actively targeted by drug developers; however, there are currently no effective and safe therapies targeting NaV1.7. Here, we tested whether a different approach, indirect NaV1.7 regulation, could have antinociceptive effects in preclinical models. We found that preventing addition of small ubiquitin-like modifier (SUMO) on the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 functions and had antinociceptive effects in rodents. In silico targeting of the SUMOylation site in CRMP2 (Lys374) identified >200 hits, of which compound 194 exhibited selective in vitro and ex vivo NaV1.7 engagement. Orally administered 194 was not only antinociceptive in preclinical models of acute and chronic pain but also demonstrated synergy alongside other analgesics­without eliciting addiction, rewarding properties, or neurotoxicity. Analgesia conferred by 194 was opioid receptor dependent. Our results demonstrate that 194 is a first-in-class protein-protein inhibitor that capitalizes on CRMP2-NaV1.7 regulation to deliver safe analgesia in rodents.


Assuntos
Dor Crônica , Canal de Sódio Disparado por Voltagem NAV1.7 , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Roedores/metabolismo , Sumoilação
6.
RSC Chem Biol ; 2(4): 1158-1166, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458829

RESUMO

Tar DNA binding (TDP)-43 proteinopathy, typically described as cytoplasmic accumulation of highly modified and misfolded TDP-43 molecules, is characteristic of several neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). TDP-43 proposed proteinopathies include homeostatic imbalance between nuclear and cytoplasmic localization, aggregation of ubiquitinated and hyper-phosphorylated TDP-43, and an increase in protein truncation of cytoplasmic TDP-43. Given the therapeutic interest of targeting TDP-43, this review focuses on the current landscape of strategies, ranging from biologics to small molecules, that directly target TDP-43. Antibodies, peptides and compounds have been designed or found to recognize specific TDP-43 sequences but alleviate TDP-43 toxicity through different mechanisms. While two antibodies described here were able to induce degradation of pathological TDP-43, the peptides and small molecules were primarily designed to reduce aggregation of TDP-43. Furthermore, we discuss promising emerging therapeutic targets.

7.
ACS Med Chem Lett ; 12(6): 915-921, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141069

RESUMO

RNA targeting has gained traction over the past decade. It has become clear that dysregulation of RNA can be linked to many diseases, leading to a need for new scaffolds recognizing RNA specifically. Long noncoding RNAs are emerging as key controllers of gene expression and potential therapeutic targets. However, traditional targeting methods have overwhelmingly been focused on proteins. In this study, we used a protein computational tool and found several possible targetable pockets in a structurally characterized long noncoding RNA, MALAT1. Screening against those identified pockets revealed several hit compounds. We tested the binding of those compounds to MALAT1 RNA and tRNA as a negative control, using SPR. While several compounds were nonspecific binders, others were able to recognize MALAT1 specifically. One of them, MTC07, has an apparent affinity of 400.2 ± 14.4 µM. Although it has weak affinity, MTC07 is the first compound targeting MALAT1 originating from in silico docking.

8.
ACS Chem Biol ; 15(11): 2854-2859, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33044808

RESUMO

In this study, we targeted the N-terminal domain (NTD) of transactive response (TAR) DNA binding protein (TDP-43), which is implicated in several neurodegenerative diseases. In silico docking of 50K compounds to the NTD domain of TDP-43 identified a small molecule (nTRD22) that is bound to the N-terminal domain. Interestingly, nTRD22 caused allosteric modulation of the RNA binding domain (RRM) of TDP-43, resulting in decreased binding to RNA in vitro. Moreover, incubation of primary motor neurons with nTRD22 induced a reduction of TDP-43 protein levels, similar to TDP-43 RNA binding-deficient mutants and supporting a disruption of TDP-43 binding to RNA. Finally, nTRD22 mitigated motor impairment in a Drosophila model of amyotrophic lateral sclerosis. Our findings provide an exciting way of allosteric modulation of the RNA-binding region of TDP-43 through the N-terminal domain.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Domínios Proteicos/efeitos dos fármacos , RNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Sítios de Ligação/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Modelos Animais de Doenças , Drosophila , Humanos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química
10.
Channels (Austin) ; 13(1): 498-504, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31680630

RESUMO

We have previously reported that the microtubule-associated collapsin response mediator protein 2 (CRMP2) is necessary for the expression of chronic pain. CRMP2 achieves this control of nociceptive signaling by virtue of its ability to regulate voltage-gated calcium and sodium channels. To date, however, no drugs exist that target CRMP2. Recently, the small molecule edonerpic maleate (1 -{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol maleate), a candidate therapeutic for Alzheimer's disease was reported to be a novel CRMP2 binding compound with the potential to decrease its phosphorylation level in cortical tissues in vivo. Here we sought to determine the mechanism of action of edonerpic maleate and test its possible effect in a rodent model of chronic pain. We observed: (i) no binding between human CRMP2 and edonerpic maleate; (ii) edonerpic maleate had no effect on CRMP2 expression and phosphorylation in dorsal root ganglion (DRG) neurons; (iii) edonerpic maleate-decreased calcium but increased sodium current density in DRG neurons; and (iv) edonerpic maleate was ineffective in reversing post-surgical allodynia in male and female mice. Thus, while CRMP2 inhibiting compounds remain a viable strategy for developing new mechanism-based pain inhibitors, edonerpic maleate is an unlikely candidate.


Assuntos
Hiperalgesia/tratamento farmacológico , Maleatos/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Tiofenos/administração & dosagem , Animais , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Gânglios Espinais/metabolismo , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação
11.
ACS Chem Neurosci ; 10(12): 4834-4846, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31697467

RESUMO

Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.


Assuntos
Analgésicos/farmacologia , Flavanonas/farmacologia , Gânglios Espinais/citologia , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Sódio/metabolismo , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Flavanonas/química , Flavanonas/metabolismo , Flavanonas/uso terapêutico , Hiperalgesia/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico , Conformação Proteica , Mapeamento de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/metabolismo , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/uso terapêutico , Organismos Livres de Patógenos Específicos , Relação Estrutura-Atividade
12.
ACS Chem Biol ; 14(9): 2006-2013, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31241884

RESUMO

RNA dysregulation likely contributes to disease pathogenesis of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. A pathological form of the transactive response (TAR) DNA binding protein (TDP-43) binds to RNA in stress granules and forms membraneless, amyloid-like TDP-43 aggregates in the cytoplasm of ALS motor neurons. In this study, we hypothesized that by targeting the RNA recognition motif (RRM) domains of TDP-43 that confer a pathogenic interaction between TDP-43 and RNA, motor neuron toxicity could be reduced. In silico docking of 50000 compounds to the RRM domains of TDP-43 identified a small molecule (rTRD01) that (i) bound to TDP-43's RRM1 and RRM2 domains, (ii) partially disrupted TDP-43's interaction with the hexanucleotide RNA repeat of the disease-linked c9orf72 gene, but not with (UG)6 canonical binding sequence of TDP-43, and (iii) improved larval turning, an assay measuring neuromuscular coordination and strength, in an ALS fly model based on the overexpression of mutant TDP-43. Our findings provide an instructive example of a chemical biology approach pivoted to discover small molecules targeting RNA-protein interactions in neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Piperidinas/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Pirazinas/uso terapêutico , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , Drosophila melanogaster/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/metabolismo , Piperidinas/metabolismo , Domínios Proteicos/efeitos dos fármacos , Pirazinas/metabolismo , RNA/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo
13.
Pain ; 160(7): 1644-1661, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30933958

RESUMO

Inhibition of voltage-gated calcium (CaV) channels is a potential therapy for many neurological diseases including chronic pain. Neuronal CaV1/CaV2 channels are composed of α, ß, γ and α2δ subunits. The ß subunits of CaV channels are cytoplasmic proteins that increase the surface expression of the pore-forming α subunit of CaV. We targeted the high-affinity protein-protein interface of CaVß's pocket within the CaVα subunit. Structure-based virtual screening of 50,000 small molecule library docked to the ß subunit led to the identification of 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide (IPPQ). This small molecule bound to CaVß and inhibited its coupling with N-type voltage-gated calcium (CaV2.2) channels, leading to a reduction in CaV2.2 currents in rat dorsal root ganglion sensory neurons, decreased presynaptic localization of CaV2.2 in vivo, decreased frequency of spontaneous excitatory postsynaptic potentials and miniature excitatory postsynaptic potentials, and inhibited release of the nociceptive neurotransmitter calcitonin gene-related peptide from spinal cord. IPPQ did not target opioid receptors nor did it engage inhibitory G protein-coupled receptor signaling. IPPQ was antinociceptive in naive animals and reversed allodynia and hyperalgesia in models of acute (postsurgical) and neuropathic (spinal nerve ligation, chemotherapy- and gp120-induced peripheral neuropathy, and genome-edited neuropathy) pain. IPPQ did not cause akinesia or motor impairment, a common adverse effect of CaV2.2 targeting drugs, when injected into the brain. IPPQ, a quinazoline analog, represents a novel class of CaV2.2-targeting compounds that may serve as probes to interrogate CaVα-CaVß function and ultimately be developed as a nonopioid therapeutic for chronic pain.


Assuntos
Analgésicos/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo N/efeitos dos fármacos , Canais de Cálcio/efeitos dos fármacos , Quinazolinas/uso terapêutico , Animais , Células CHO , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Simulação por Computador , Cricetulus , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Masculino , Neuralgia/tratamento farmacológico , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
14.
Biomol NMR Assign ; 13(1): 163-167, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30694439

RESUMO

TAR DNA-binding protein 43 (TDP-43) is a ubiquitously expressed nuclear protein that influences diverse cellular processes by regulating alternative splicing of RNA and microRNA biogenesis. It is also a pathological protein found in sporadic ALS and in the most common subtype of frontotemporal lobar degeneration with ubiquitinated inclusions (FLTD-U). TDP-43 has two tandem RNA-binding domains, RRM1 and RRM2. The NMR structure of TDP-43 was solved in the presence of UG-rich RNA sequences bound to the RRM1 and RRM2 domains. Here we report the backbone assignment of apo TDP-43. The chemical shift (HN, N, C, Cα and Cß) analysis shows the predicted regions of secondary structure are in good agreement with those observed for TDP-43 in complex with RNA. However, our data show that the apo structure of TPD-43 has increased flexibility in the regions that would normally have been used to anchor the RNA bases. The backbone chemical shifts assignments will prove useful in the study of TDP-43 interaction with non-canonical RNA and RRM-binding proteins.


Assuntos
Apoproteínas/química , Proteínas de Ligação a DNA/química , Ressonância Magnética Nuclear Biomolecular , Motivo de Reconhecimento de RNA , Sequência de Aminoácidos , Isótopos de Carbono , Humanos , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Prótons
15.
Front Mol Neurosci ; 12: 301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920533

RESUMO

Transactive response DNA binding protein (TDP-43) is a key player in neurodegenerative diseases. In this review, we have gathered and presented structural information on the different regions of TDP-43 with high resolution structures available. A thorough understanding of TDP-43 structure, effect of modifications, aggregation and sites of localization is necessary as we develop therapeutic strategies targeting TDP-43 for neurodegenerative diseases. We discuss how different domains as well as post-translational modification may influence TDP-43 overall structure, aggregation and droplet formation. The primary aim of the review is to utilize structural insights as we develop an understanding of the deleterious behavior of TDP-43 and highlight locations of established and proposed post-translation modifications. TDP-43 structure and effect on localization is paralleled by many RNA-binding proteins and this review serves as an example of how structure may be modulated by numerous compounding elements.

16.
ACS Chem Biol ; 13(10): 3000-3010, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30141626

RESUMO

Mutations of EXOSC3 have been linked to the rare neurological disorder known as Pontocerebellar Hypoplasia type 1B (PCH1B). EXOSC3 is one of three putative RNA-binding structural cap proteins that guide RNA into the RNA exosome, the cellular machinery that degrades RNA. Using RNAcompete, we identified a G-rich RNA motif binding to EXOSC3. Surface plasmon resonance (SPR) and microscale thermophoresis (MST) indicated an affinity in the low micromolar range of EXOSC3 for long and short G-rich RNA sequences. Although several PCH1B-causing mutations in EXOSC3 did not engage a specific RNA motif as shown by RNAcompete, they exhibited lower binding affinity to G-rich RNA as demonstrated by MST. To test the hypothesis that modification of the RNA-protein interface in EXOSC3 mutants may be phenocopied by small molecules, we performed an in-silico screen of 50 000 small molecules and used enzyme-linked immunosorbant assays (ELISAs) and MST to assess the ability of the molecules to inhibit RNA-binding by EXOSC3. We identified a small molecule, EXOSC3-RNA disrupting (ERD) compound 3 (ERD03), which ( i) bound specifically to EXOSC3 in saturation transfer difference nuclear magnetic resonance (STD-NMR), ( ii) disrupted the EXOSC3-RNA interaction in a concentration-dependent manner, and ( iii) produced a PCH1B-like phenotype with a 50% reduction in the cerebellum and an abnormally curved spine in zebrafish embryos. This compound also induced modification of zebrafish RNA expression levels similar to that observed with a morpholino against EXOSC3. To our knowledge, this is the first example of a small molecule obtained by rational design that models the abnormal developmental effects of a neurodegenerative disease in a whole organism.


Assuntos
Modelos Animais de Doenças , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Isoquinolinas/farmacologia , Isoquinolinas/toxicidade , Atrofias Olivopontocerebelares/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Peixe-Zebra/anormalidades , Animais , Atrofia , Cerebelo/patologia , Regulação para Baixo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Técnicas de Silenciamento de Genes , Humanos , Isoquinolinas/metabolismo , Simulação de Acoplamento Molecular , Mutação , Atrofias Olivopontocerebelares/induzido quimicamente , Atrofias Olivopontocerebelares/patologia , Fenótipo , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Curvaturas da Coluna Vertebral/induzido quimicamente , Transcriptoma/efeitos dos fármacos , Regulação para Cima
17.
Channels (Austin) ; 12(1): 219-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30081699

RESUMO

Drug discovery campaigns directly targeting the voltage-gated sodium channel NaV1.7, a highly prized target in chronic pain, have not yet been clinically successful. In a differentiated approach, we demonstrated allosteric control of trafficking and activity of NaV1.7 by prevention of SUMOylation of collapsin response mediator protein 2 (CRMP2). Spinal administration of a SUMOylation incompetent CRMP2 (CRMP2 K374A) significantly attenuated pain behavior in the spared nerve injury (SNI) model of neuropathic pain, underscoring the importance of SUMOylation of CRMP2 as a pathologic event in chronic pain. Using a rational design strategy, we identified a heptamer peptide harboring CRMP2's SUMO motif that disrupted the CRMP2-Ubc9 interaction, inhibited CRMP2 SUMOylation, inhibited NaV1.7 membrane trafficking, and specifically inhibited NaV1.7 sodium influx in sensory neurons. Importantly, this peptide reversed nerve injury-induced thermal and mechanical hypersensitivity in the SNI model, supporting the practicality of discovering pain drugs by indirectly targeting NaV1.7 via prevention of CRMP2 SUMOylation. Here, our goal was to map the unique interface between CRMP2 and Ubc9, the E2 SUMO conjugating enzyme. Using computational and biophysical approaches, we demonstrate the enzyme/substrate nature of Ubc9/CRMP2 binding and identify hot spots on CRMP2 that may form the basis of future drug discovery campaigns disrupting the CRMP2-Ubc9 interaction to recapitulate allosteric regulation of NaV1.7 for pain relief.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas , Enzimas de Conjugação de Ubiquitina/metabolismo , Regulação Alostérica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Canal de Sódio Disparado por Voltagem NAV1.7/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética
18.
Pain ; 159(10): 2115-2127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29847471

RESUMO

We previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.7 currents. Microscale thermophoresis and amplified luminescent proximity homogeneous alpha assay revealed a low micromolar binding affinity between CRMP2 and Ubc9. A heptamer peptide harboring CRMP2's SUMO motif, also bound with similar affinity to Ubc9, disrupted the CRMP2-Ubc9 interaction in a concentration-dependent manner. Importantly, incubation of a tat-conjugated cell-penetrating peptide (t-CSM) decreased sodium currents, predominantly NaV1.7, in a model neuronal cell line. Dialysis of t-CSM peptide reduced CRMP2 SUMOylation and blocked surface trafficking of NaV1.7 in rat sensory neurons. Fluorescence dye-based imaging in rat sensory neurons demonstrated inhibition of sodium influx in the presence of t-CSM peptide; by contrast, calcium influx was unaffected. Finally, t-CSM effectively reversed persistent mechanical and thermal hypersensitivity induced by a spinal nerve injury, a model of neuropathic pain. Structural modeling has now identified a pocket-harboring CRMP2's SUMOylation motif that, when targeted through computational screening of ligands/molecules, is expected to identify small molecules that will biochemically and functionally target CRMP2's SUMOylation to reduce NaV1.7 currents and reverse neuropathic pain.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Receptoras Sensoriais/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/fisiopatologia , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Proteínas do Tecido Nervoso/genética , Neuralgia/tratamento farmacológico , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Sódio/metabolismo , Transdução Genética , Enzimas de Conjugação de Ubiquitina/genética
19.
Br J Pharmacol ; 175(12): 2244-2260, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28161890

RESUMO

BACKGROUND AND PURPOSE: N-type voltage-gated calcium (Cav 2.2) channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Although Cav 2.2 channel antagonists are recommended as first-line treatment for neuropathic pain, calcium-current blocking gabapentinoids inadequately alleviate chronic pain symptoms and often exhibit numerous side effects. Collapsin response mediator protein 2 (CRMP2) targets Cav 2.2 channels to the sensory neuron membrane and allosterically modulates their function. A 15-amino-acid peptide (CBD3), derived from CRMP2, disrupts the functional protein-protein interaction between CRMP2 and Cav 2.2 channels to inhibit calcium influx, transmitter release and acute, inflammatory and neuropathic pain. Here, we have mapped the minimal domain of CBD3 necessary for its antinociceptive potential. EXPERIMENTAL APPROACH: Truncated as well as homology-guided mutant versions of CBD3 were generated and assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons, binding between CRMP2 and Cav 2.2 channels, whole-cell voltage clamp electrophysiology and behavioural effects in two models of experimental pain: post-surgical pain and HIV-induced sensory neuropathy induced by the viral glycoprotein 120. KEY RESULTS: The first six amino acids within CBD3 accounted for all in vitro activity and antinociception. Spinal administration of a prototypical peptide (TAT-CBD3-L5M) reversed pain behaviours. Homology-guided mutational analyses of these six amino acids identified at least two residues, Ala1 and Arg4, as being critical for antinociception in two pain models. CONCLUSIONS AND IMPLICATIONS: These results identify an antinociceptive scaffold core in CBD3 that can be used for development of low MW mimetics of CBD3. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Assuntos
Analgésicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Dor/tratamento farmacológico , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Analgésicos/química , Animais , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/metabolismo , Fragmentos de Peptídeos/química , Ratos , Ratos Sprague-Dawley
20.
Pain ; 158(12): 2301-2319, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28809766

RESUMO

Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disease linked to mutations of the Nf1 gene. Patients with NF1 commonly experience severe pain. Studies on mice with Nf1 haploinsufficiency have been instructive in identifying sensitization of ion channels as a possible cause underlying the heightened pain suffered by patients with NF1. However, behavioral assessments of Nf1 mice have led to uncertain conclusions about the potential causal role of Nf1 in pain. We used the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (CRISPR/Cas9) genome editing system to create and mechanistically characterize a novel rat model of NF1-related pain. Targeted intrathecal delivery of guide RNA/Cas9 nuclease plasmid in combination with a cationic polymer was used to generate allele-specific C-terminal truncation of neurofibromin, the protein encoded by the Nf1 gene. Rats with truncation of neurofibromin, showed increases in voltage-gated calcium (specifically N-type or CaV2.2) and voltage-gated sodium (particularly tetrodotoxin-sensitive) currents in dorsal root ganglion neurons. These gains-of-function resulted in increased nociceptor excitability and behavioral hyperalgesia. The cytosolic regulatory protein collapsin response mediator protein 2 (CRMP2) regulates activity of these channels, and also binds to the targeted C-terminus of neurofibromin in a tripartite complex, suggesting a possible mechanism underlying NF1 pain. Prevention of CRMP2 phosphorylation with (S)-lacosamide resulted in normalization of channel current densities, excitability, as well as of hyperalgesia following CRISPR/Cas9 truncation of neurofibromin. These studies reveal the protein partners that drive NF1 pain and suggest that CRMP2 is a key target for therapeutic intervention.


Assuntos
Acetamidas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Neurofibromina 1/genética , Dor/genética , Animais , Sistemas CRISPR-Cas/efeitos dos fármacos , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Feminino , Gânglios Espinais/metabolismo , Genes da Neurofibromatose 1/fisiologia , Lacosamida , Masculino , Neurônios/metabolismo , Dor/metabolismo , Fosforilação , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA