Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927086

RESUMO

This retrospective begins with Galvani's experiments on frogs at the end of the 18th century and his discovery of 'animal electricity'. It goes on to illustrate the numerous contributions to the field of physical chemistry in the second half of the 19th century (Nernst's equilibrium potential, based on the work of Wilhelm Ostwald, Max Planck's ion electrodiffusion, Einstein's studies of Brownian motion) which led Bernstein to propose his membrane theory in the early 1900s as an explanation of Galvani's findings and cell excitability. These processes were fully elucidated by Hodgkin and Huxley in 1952 who detailed the ionic basis of resting and action potentials, but without addressing the question of where these ions passed. The emerging question of the existence of ion channels, widely debated over the next two decades, was finally accepted and, a decade later, many of them began to be cloned. This led to the possibility of modelling the activity of individual neurons in the brain and then that of simple circuits. Taking advantage of the remarkable advances in computer science in the new millennium, together with a much deeper understanding of brain architecture, more ambitious scientific goals were dreamed of to understand the brain and how it works. The retrospective concludes by reviewing the main efforts in this direction, namely the construction of a digital brain, an in silico copy of the brain that would run on supercomputers and behave just like a real brain.


Assuntos
Encéfalo , Canais Iônicos , Animais , Humanos , Encéfalo/metabolismo , Encéfalo/fisiologia , Canais Iônicos/metabolismo , História do Século XX , História do Século XIX , Eletricidade , História do Século XVIII , Modelos Neurológicos
2.
Biomolecules ; 13(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38136613

RESUMO

The malignancy of glioblastoma (GBM), the most aggressive type of human brain tumor, strongly correlates with the presence of hypoxic areas within the tumor mass. Oxygen levels have been shown to control several critical aspects of tumor aggressiveness, such as migration/invasion and cell death resistance, but the underlying mechanisms are still unclear. GBM cells express abundant K+ and Cl- channels, whose activity supports cell volume and membrane potential changes, critical for cell proliferation, migration and death. Volume-regulated anion channels (VRAC), which mediate the swelling-activated Cl- current, and the large-conductance Ca2+-activated K+ channels (BK) are both functionally upregulated in GBM cells, where they control different aspects underlying GBM malignancy/aggressiveness. The functional expression/activity of both VRAC and BK channels are under the control of the oxygen levels, and these regulations are involved in the hypoxia-induced GBM cell aggressiveness. The present review will provide a comprehensive overview of the literature supporting the role of these two channels in the hypoxia-mediated GBM malignancy, suggesting them as potential therapeutic targets in the treatment of GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Linhagem Celular Tumoral , Hipóxia/metabolismo , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA