Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Anal Chim Acta ; 1304: 342470, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637058

RESUMO

BACKGROUND: Iridium(III) complexes, exhibiting high luminescence quantum yields and a wide range of emission colours, are promising alternatives to tris(2,2'-bipyridine)ruthenium(II) for chemiluminescence (CL) and electrochemiluminescence (ECL) detection. This emerging class of reagent, however, is limited by the poor solubility of many iridium(III) complexes in aqueous solution, and lack of understanding of their remarkably variable selectivities towards different analytes. RESULTS: Seven [Ir(C^N)2(pt-TEG)]+ complexes, exhibiting a wide range of reduction potentials and emission energies, were examined with six model analytes. For CL, cerium(IV) was used as the oxidant. The alkylamine analytes generally produced greater CL and ECL with the more readily oxidised Ir(III) complexes (C^N = piq, bt, ppy), predominantly through the 'direct' pathway requiring oxidation of both metal complex and analyte. Aniline derivatives that did not also contain secondary or tertiary alkylamines elicited CL from the less readily oxidised complexes (C^N = df-ppy-CF3, df-ppy) via energy transfer. The most difficult to oxidise complexes (C^N = df(CF3)-ppy-Me, df(CN)-ppy) gave poor responses due to the limited potential window of the solvent and inefficiency of energy transfer to their high energy excited states. Greater CL and/or ECL intensities were generally obtained for each analyte with at least one Ir(III) complex than with [Ru(bpy)3]2+; superior limits of detection for two analytes were demonstrated. SIGNIFICANCE: This exploration of CL/ECL in which the properties of luminophore, analyte and oxidant are all varied provides a new understanding of the influence of the metal-complex potentials and excited state energy on the light-producing and quenching pathways, and consequently, their distinct selectivity towards different analytes. These findings will guide the development of water-soluble Ir(III) complexes as CL and ECL reagents.

2.
Angew Chem Int Ed Engl ; 63(21): e202319047, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519420

RESUMO

We report the electrochemiluminescence (ECL) of a 3d6 Cr(0) complex ([Cr(LMes)3]; λem=735 nm) with comparable photophysical properties to those of ECL-active complexes of 4d6 or 5d6 precious metal ions. The electrochemical potentials of [Cr(LMes)3] are more negative than those of [Ir(ppy)3] and render the [Cr(LMes)3]* excited state inaccessible through conventional co-reactant ECL with tri-n-propylamine or oxalate. ECL can be obtained, however, through the annihilation route in which potentials sufficient to oxidise and reduce the luminophore are alternately applied. When combined with [Ir(ppy)3] (λem=520 nm), the annihilation ECL of [Cr(LMes)3] was greatly enhanced whereas that of [Ir(ppy)3] was diminished. Under appropriate conditions, the relative intensities of the two spectrally distinct emissions can be controlled through the applied potentials. From this starting point for ECL with 3d6 metal complexes, we discuss some directions for future development.

3.
Chem Sci ; 15(3): 1150-1158, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239687

RESUMO

Electrochemiluminescence (ECL) is a highly sensitive mode of detection utilised in commercialised bead-based immunoassays. Recently, the introduction of a freely diffusing water-soluble Ir(iii) complex was demonstrated to enhance the ECL emission of [Ru(bpy)3]2+ labels anchored to microbeads, but a comprehensive investigation of the proposed 'redox-mediated' mechanism was not carried out. In this work, we select three different water-soluble Ir(iii) complexes by virtue of their photophysical and electrochemical properties in comparison with those of the [Ru(bpy)3]2+ luminophore and the TPrA co-reactant. A systematic investigation of the influence of each Ir(iii) complex on the emission of the Ru(ii) labels on single beads by ECL microscopy revealed that the heterogeneous ECL can be finely tuned and either enhanced up to 107% or lowered by 75%. The variation of the [Ru(bpy)3]2+ ECL emission was correlated to the properties of each Ir(iii)-based mediator, which enabled us to decipher the mechanism of interaction and define guidelines for the future design of novel Ir(iii) complexes to further enhance the ECL emission of bead-based immunoassays. Ultimately, we showcase the potential of this technology for practical sample analysis in commercial instruments by assessing the enhancement of the collective ECL intensity from a bead-based system.

4.
Macromol Rapid Commun ; : e2300274, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474483

RESUMO

Nitroxide groups covalently grafted to carbon fibers are used as anchoring sites for TEMPO-terminated polymers (poly-n-butylacrylate and polystyrene) in a "graft to" surface modification strategy. All surface-modified fibers are evaluated for their physical properties, showing that several treatments have enhanced the tensile strength and Young's modulus compared to the control fibers. Up to an 18% increase in tensile strength and 12% in Young's modulus are observed. Similarly, the evaluation of interfacial shear strength in an epoxy polymer shows improvements of up to 144% relative to the control sample. Interestingly, the polymer-grafted surfaces show smaller increases in interfacial shear strength compared to surfaces modified with a small molecule only. This counterintuitive result is attributed to the incompatibility, both chemical and physical, of the grafted polymers to the surrounding epoxy matrix. Molecular dynamics simulations of the interface suggest that the diminished increase in mechanical shear strength observed for the polymer grafted surfaces may be due to the lack of exposed chain ends, whereas the small molecule grafted interface exclusively presents chain ends to the resin interface, resulting in good improvements in mechanical properties.

5.
Anal Chem ; 95(18): 7372-7378, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37098243

RESUMO

Electrochemiluminescence (ECL) microscopy is an emerging technique with new applications such as imaging of single entities and cells. Herein, we have developed a bimodal and bicolor approach to record both positive ECL (PECL: light-emitting object on dark background) and shadow label-free ECL (SECL: nonemissive object shadowing the background luminescence) images of single cells. This bimodal approach is the result of the simultaneous emissions of [Ru(bpy)3]2+ used to label the cellular membrane (PECL) and [Ir(sppy)3]3- dissolved in solution (SECL). By spectrally resolving the ECL emission wavelengths, we recorded the images of the same cells in both PECL and SECL modes using the [Ru(bpy)3]2+ (λmax = 620 nm) and [Ir(sppy)3]3- (λmax = 515 nm) luminescence, respectively. PECL shows the distribution of the [Ru(bpy)3]2+ labels attached to the cellular membrane, whereas SECL reflects the local diffusional hindrance of the ECL reagents by each cell. The high sensitivity and surface-confined features of the reported approach are demonstrated by imaging cell-cell contacts during the mitosis process. Furthermore, the comparison of PECL and SECL images demonstrates the differential diffusion of tri-n-propylamine and [Ir(sppy)3]3- through the permeabilized cell membranes. Consequently, this dual approach enables the imaging of the morphology of the cell adhering on the surface and can significantly contribute to multimodal ECL imaging and bioassays with different luminescent systems.


Assuntos
Medições Luminescentes , Microscopia , Medições Luminescentes/métodos , Fotometria , Luminescência , Membrana Celular
6.
J Org Chem ; 88(10): 6445-6453, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36629260

RESUMO

Sacrificial additives are commonly employed in photoredox catalysis as a convenient source of electrons, but what occurs after electron transfer is often overlooked. Tertiary alkylamines initially form radical cations following electron transfer, which readily deprotonate to form strongly reducing, neutral α-amino radicals. Similarly, the oxalate radical anion (C2O4•-) rapidly decomposes to form CO2•- (E0 ≈ -2.2 V vs SCE). We show that not only are these reactive intermediates formed under photoredox conditions, but they can also impact the desired photochemistry, both positively and negatively. Photoredox systems using oxalate as an electron donor are able to engage substrates with greater energy demands, extending reactivity past the energy limits of single and multiphoton transition metal catalysts. Furthermore, oxalate offers better chemoselectivity than the commonly employed triethylamine when reducing substrates with moderate energy requirements.

7.
ACS Sens ; 8(2): 933-939, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36701204

RESUMO

Heterogeneous electrochemiluminescence (ECL) assays employing tri-n-propylamine as a co-reactant and a tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) derivative as an emissive label are integral to the majority of academic and commercial applications of ECL sensing. This model system is an active research area and constitutes the basis of successfully commercialized bead-based ECL immunoassays. Herein, we propose a novel approach to the enhancement of such conventional ECL assays via the incorporation of a second metal coordination complex, [Ir(sppy)3]3- (where sppy = 5'-sulfo-2-phenylpyridinato-C2,N), to the experimental system. By employing ECL microscopy, we are able to map the spatial distribution of ECL emission at the surface of the bead, from [Ru(bpy)3]2+ labels, and solution-phase emission, from [Ir(sppy)3]3-. The developed [Ir(sppy)3]3--mediated enhancement approach elicited a significant improvement (70.9-fold at 0.9 V and 2.9-fold at 1.2 V vs Ag/AgCl) of the ECL signal from [Ru(bpy)3]2+ labels immobilized on the surface of a polystyrene bead. This dramatic enhancement in ECL signal, particularly at low oxidation potentials, has important implications for the improvement of existing heterogeneous ECL assays and ECL-based microscopy, by amplifying the signal, opening new bioanalytical detection schemes, and reducing both electrode surface passivation and deleterious side reactions.


Assuntos
Complexos de Coordenação , Rutênio , Irídio , Medições Luminescentes , Fotometria
8.
Schizophr Bull ; 48(6): 1263-1272, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35857752

RESUMO

BACKGROUND AND HYPOTHESIS: Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia, yet a significant proportion of individuals on clozapine continue to experience disabling symptoms, despite being treated with an adequate dose. There is a need for adjunct treatments to augment clozapine, notably for negative and cognitive symptoms. One such potential agent is the glutathione precursor N-acetylcysteine (NAC). STUDY DESIGN: A randomized double-blind, multi-center, placebo-controlled trial for clozapine patients with enduring psychotic symptoms (n = 84) was undertaken to investigate the efficacy of adjunctive NAC (2 g daily) for negative symptoms, cognition and quality of life (QoL). Efficacy was assessed at 8, 24, and 52 weeks. STUDY RESULTS: NAC did not significantly improve negative symptoms (P = .62), overall cognition (P = .71) or quality of life (Manchester quality of life: P = .11; Assessment of quality of life: P = .57) at any time point over a 1-year period of treatment. There were no differences in reported side effects between the groups (P = .26). CONCLUSIONS: NAC did not significantly improve schizophrenia symptoms, cognition, or quality of life in treatment-resistant patients taking clozapine. This trial was registered with "Australian and New Zealand Clinical Trials" on the 30 May, 2016 (Registration Number: ACTRN12615001273572).


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/efeitos adversos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/induzido quimicamente , Acetilcisteína/farmacologia , Qualidade de Vida/psicologia , Resultado do Tratamento , Austrália , Antipsicóticos/efeitos adversos , Método Duplo-Cego
9.
J Am Chem Soc ; 144(25): 11189-11202, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704840

RESUMO

Photoredox catalysts are primarily selected based on ground and excited state properties, but their activity is also intrinsically tied to the nature of their reduced (or oxidized) intermediates. Catalyst reactivity often necessitates an inherent instability, thus these intermediates represent a mechanistic turning point that affords either product formation or side-reactions. In this work, we explore the scope of a previously demonstrated side-reaction that partially saturates one pyridine ring of the ancillary ligand in heteroleptic iridium(III) complexes. Using high-throughput synthesis and screening under photochemical conditions, we identified different chemical pathways, ultimately governed by ligand composition. The ancillary ligand was the key factor that determined photochemical stability. Following photoinitiated electron transfer from a sacrificial tertiary amine, the reduced intermediate of complexes containing 1,10-phenanthroline derivatives exhibited long-term stability. In contrast, complexes containing 2,2'-bipyridines were highly susceptible to hydrogen atom transfer and ancillary ligand modification. Detailed characterization of selected complexes before and after transformation showed differing effects on the ground and excited state reduction potentials dependent on the nature of the cyclometalating ligands and excited states. The implications of catalyst stability and reactivity in chemical synthesis was demonstrated in a model photoredox reaction.


Assuntos
Irídio , Fenantrolinas , Hidrogênio , Irídio/química , Ligantes
10.
Bioelectrochemistry ; 146: 108107, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35390667

RESUMO

A powerful, yet low-cost and semi-portable electrochemiluminescence (ECL) biosensing device is described. It is constructed around a Raspberry Pi single-board computer, which serves as the controller and user interface. The Pi is interfaced with an expansion board that controls the potential applied to a disposable screen-printed electrode and facilitates data acquisition from a photomultiplier tube (PMT), which detects the ECL emission from the sensor surface. As proof-of-concept, we demonstrate that this arrangement can quantitate tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+]) with an estimated limit of detection (LOD) of 20 pM, and C-reactive protein with an LOD of 50 fg mL-1. The analytical performance of the Raspberry Pi-based setup is comparable to a conventional ECL configuration (computer, potentiostat and photodetector). The Raspberry Pi-based setup can replace a conventional ECL setup, at a fraction of the cost, without sacrificing sensitivity or versatility. The combination of a single-board computer and a sensitive light detector represents a significant step towards translating ECL instruments into mobile, point-of-care diagnostic platforms.


Assuntos
Técnicas Biossensoriais , Medições Luminescentes , Técnicas Eletroquímicas , Eletrodos , Imunoensaio , Limite de Detecção
11.
Chem Sci ; 13(2): 469-477, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35126979

RESUMO

The classic and most widely used co-reactant electrochemiluminescence (ECL) reaction of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3]2+) and tri-n-propylamine is enhanced by an order of magnitude by fac-[Ir(sppy)3]3- (where sppy = 5'-sulfo-2-phenylpyridinato-C 2,N), through a novel 'redox mediator' pathway. Moreover, the concomitant green emission of [Ir(sppy)3]3-* enables internal standardisation of the co-reactant ECL of [Ru(bpy)3]2+. This can be applied using a digital camera as the photodetector by exploiting the ratio of R and B values of the RGB colour data, providing superior sensitivity and precision for the development of low-cost, portable ECL-based analytical devices.

12.
Chem Sci ; 12(28): 9770-9777, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34349950

RESUMO

We present a new approach to explore the potential-dependent multi-colour co-reactant electrochemiluminescence (ECL) from multiple luminophores. The potentials at both the working and counter electrodes, the current between these electrodes, and the emission over cyclic voltammetric scans were simultaneously measured for the ECL reaction of Ir(ppy)3 and either [Ru(bpy)3]2+ or [Ir(df-ppy)2(ptb)]+, with tri-n-propylamine as the co-reactant. The counter electrode potential was monitored by adding a differential electrometer module to the potentiostat. Plotting the data against the applied working electrode potential and against time provided complementary depictions of their relationships. Photographs of the ECL at the surface of the two electrodes were taken to confirm the source of the emissions. This provided a new understanding of these multifaceted ECL systems, including the nature of the counter electrode potential and the possibility of eliciting ECL at this electrode, a mechanism-based rationalisation of the interactions of different metal-complex luminophores, and a previously unknown ECL pathway for the Ir(ppy)3 complex at negative potentials that was observed even in the absence of the co-reactant.

13.
Front Chem ; 8: 583631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195075

RESUMO

Four cationic heteroleptic iridium(III) complexes containing a 2,2'-bipyridine (bpy) ligand with one or two tetraethylene glycol (TEG) groups attached in the 4 or 4,4' positions were synthesized to create new water-soluble electrogenerated chemiluminescence (ECL) luminophores bearing a convenient point of attachment for the development of ECL-labels. The novel TEG-derivatized bipyridines were incorporated into [Ir(C∧N)2(R-bpy-R')]Cl complexes, where C∧N = 2-phenylpyridine anion (ppy) or 2-phenylbenzo[d]thiazole anion (bt), through reaction with commercially available ([Ir(C∧N)2(µ-Cl)]2 dimers. The novel [Ir(C∧N)2(Me-bpy-TEG)]Cl and [Ir(C∧N)2(TEG-bpy-TEG)]Cl complexes in aqueous solution largely retained the redox potentials and emission spectra of the parent [Ir(C∧N)2(Me-bpy-Me)]PF6 (where Me-bpy-Me = 4,4'methyl-2,2'-bipyridine) luminophores in acetonitrile, and exhibited ECL intensities similar to those of [Ru(bpy)3]2+ and the analogous [Ir(C∧N)2(pt-TEG]Cl complexes (where pt-TEG = 1-(TEG)-4-(2-pyridyl)-1,2,3-triazole). These complexes can be readily adapted for bioconjugation and considering the spectral distributions of [Ir(ppy)2(Me-bpy-TEG)]+ and [Ir(ppy)2(pt-TEG)]+, show a viable strategy to create ECL-labels with different emission colors from the same commercial [Ir(ppy)2(µ-Cl)]2 precursor.

14.
Chem Commun (Camb) ; 56(69): 10022-10025, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728680

RESUMO

We demonstrate the first use of pure films of two-dimensional (2D) transition metal carbides and nitrides (Ti3C2Tx MXene) as an electrode material for electrogenerated chemiluminescence (ECL). The Ti3C2Tx MXene electrodes exhibited excellent electrochemical stability in the cathodic scan range and produced bright reductive-oxidation ECL using peroxydisulfate as a co-reactant with the tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3]2+) luminophore.

15.
Nanoscale ; 12(17): 9471-9480, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347271

RESUMO

Highly flexible and stable plasmonic nanopaper comprised of silver nanocubes and cellulose nanofibres was fabricated through a self-assembly-assisted vacuum filtration method. It shows significant enhancement of the fluorescence emission with an enhancement factor of 3.6 and Raman scattering with an enhancement factor of ∼104, excellent mechanical properties with tensile strength of 62.9 MPa and Young's modulus of 690.9 ± 40 MPa, and a random distribution of Raman intensity across the whole nanopaper. The plasmonic nanopapers were encoded with multiplexed optical signals including surface plasmon resonance, fluorescence and SERS for anti-counterfeiting applications, thus increasing security levels. The surface plasmon resonance and fluorescence information is used as the first layer of security and can be easily verified by the naked eye, while the unclonable SERS mapping is used as the second layer of security and can be readily authenticated by Raman spectroscopy using a computer vision technique.

16.
Chem Sci ; 11(17): 4508-4515, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-34122909

RESUMO

Controlling electrochemiluminescence (ECL) color(s) is crucial for many applications ranging from multiplexed bioassays to ECL microscopy. This can only be achieved through the fundamental understanding of high-energy electron-transfer processes in complex and competitive reaction schemes. Recently, this field has generated huge interest, but the effective implementation of multicolor ECL is constrained by the limited number of ECL-active organometallic dyes. Herein, the first self-enhanced organic ECL dye, a chiral red-emitting cationic diaza [4]helicene connected to a dimethylamino moiety by a short linker, is reported. This molecular system integrates bifunctional ECL features (i.e. luminophore and coreactant) and each function may be operated either separately or simultaneously. This unique level of control is enabled by integrating but decoupling both molecular functions in a single molecule. Through this dual molecular reactivity, concomitant multicolor ECL emission from red to blue with tunable intensity is readily obtained in aqueous media. This is done through competitive electron-transfer processes between the helicene and a ruthenium or iridium dye. The reported approach provides a general methodology to extend to other coreactant/luminophore systems, opening enticing perspectives for spectrally distinct detection of several analytes, and original analytical and imaging strategies.

17.
Front Chem ; 8: 628483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585404

RESUMO

We examined a series of commercially available screen-printed electrodes (SPEs) for their suitability for electrochemical and electrogenerated chemiluminescence (ECL) detection systems. Using cyclic voltammetry with both a homogeneous solution-based and a heterogeneous bead-based ECL assay format, the most intense ECL signals were observed from unmodified carbon-based SPEs. Three commercially available varieties were tested, with Zensor outperforming DropSens and Kanichi in terms of sensitivity. The incorporation of nanomaterials in the electrode did not significantly enhance the ECL intensity under the conditions used in this evaluation (such as gold nanoparticles 19%, carbon nanotubes 45%, carbon nanofibers 21%, graphene 48%, and ordered mesoporous carbon 21% compared to the ECL intensity of unmodified Zensor carbon electrode). Platinum and gold SPEs exhibited poor relative ECL intensities (16% and 10%) when compared to carbonaceous materials, due to their high rates of surface oxide formation and inefficient oxidation of tri-n-propylamine (TPrA). However, the ECL signal at platinum electrodes can be increased ∼3-fold with the addition of a surfactant, which enhanced TPrA oxidation due to increasing the hydrophobicity of the electrode surface. Our results also demonstrate that each SPE should only be used once, as we observed a significant change in ECL intensity over repeated CV scans and SPEs cannot be mechanically polished to refresh the electrode surface.

18.
Nutr Neurosci ; 23(2): 139-148, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29847303

RESUMO

Objectives: Schizophrenia is a debilitating psychiatric illness associated with positive and negative symptoms as well as significant impairments in cognition. Current antipsychotic medications do not alleviate these cognitive deficits, and more effective therapeutic options are required. Increased oxidative stress and altered antioxidant levels, including glutathione (GSH) have been observed both in individuals with cognitive impairment and in people with schizophrenia. A GSH precursor, the antioxidant N-acetylcysteine (NAC) has been investigated as a novel treatment for the cognitive symptoms of schizophrenia, and recent research suggests that NAC may be a promising adjunctive treatment option. However, the current literature lacks integration as to why NAC may effectively improve cognition in schizophrenia. The present theoretical synthesis aimed to address this gap by examining the processes by which NAC may improve cognitive function in schizophrenia. Methods: The schizophrenia literature was reviewed in three key domains: cognitive impairment, the relationship between oxidative stress and cognition, and the efficacy of NAC as a novel treatment. This led to a theoretical analysis of the neurobiological processes by which NAC may improve cognition in schizophrenia. Results: This theoretical review concluded that improved cognition may result from a combination of factors, including decreased oxidative stress, neuroprotection of cognitive networks and an increase in glutamatergic modulation of the N-methyl-d-aspartate receptor system. Whilst a number of mechanisms by which NAC may improve cognition and symptoms in schizophrenia have been proposed, there is still limited understanding of the specific metabolic pathways involved and how they interrelate and modify specific symptomology. Discussion: Exploration of how NAC treatment may act to improve cognitive function could guide clinical trials by investigation of the specific neurotransmitter systems and processes involved, allowing for targeted neurological outcome measures. Future research would benefit from the investigation of both in vivo cortical GSH concentration and peripheral plasma GSH in a population of individuals with chronic schizophrenia.


Assuntos
Acetilcisteína/uso terapêutico , Cognição/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Glutationa/fisiologia , Humanos , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia
19.
Chem Sci ; 10(37): 8654-8667, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31803440

RESUMO

Translation of the highly promising electrogenerated chemiluminescence (ECL) properties of Ir(iii) complexes (with tri-n-propylamine (TPrA) as a co-reactant) into a new generation of ECL labels for ligand binding assays necessitates the introduction of functionality suitable for bioconjugation. Modification of the ligands, however, can affect not only the photophysical and electrochemical properties of the complex, but also the reaction pathways available to generate light. Through a combined theoretical and experimental study, we reveal the limitations of conventional approaches to the design of electrochemiluminophores and introduce a new class of ECL label, [Ir(C^N)2(pt-TOxT-Sq)]+ (where C^N is a range of possible cyclometalating ligands, and pt-TOxT-Sq is a pyridyltriazole ligand with trioxatridecane chain and squarate amide ethyl ester), which outperformed commercial Ir(iii) complex labels in two commonly used assay formats. Predicted limits on the redox potentials and emission wavelengths of Ir(iii) complexes capable of generating ECL via the dominant pathway applicable in microbead supported ECL assays were experimentally verified by measuring the ECL intensities of the parent luminophores at different applied potentials, and comparing the ECL responses for the corresponding labels under assay conditions. This study provides a framework to tailor ECL labels for specific assay conditions and a fundamental understanding of the ECL pathways that will underpin exploration of new luminophores and co-reactants.

20.
ACS Appl Mater Interfaces ; 11(44): 41617-41625, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31601101

RESUMO

Colored and color-changing materials are central to perception and interaction in nature and have been exploited in an array of modern technologies such as sensors, visual displays, and smart materials. Attempts to introduce color into carbon fiber materials have been limited by deleterious impacts on fiber properties, and the extension of colored fibers toward "smart composites" remains in its infancy. We present carbon fibers incorporating structural color, similar to that observed on the surface of soap bubbles and various insects and birds, by modifying the fiber surface through in situ polymerization grafting. When dry, the treated fibers exhibit a striking blue color, but when exposed to a volatile solvent, a cascade of colors across the visible light region is observed as the film first swells and then shrinks as the solvent evaporates. The treated fibers not only possess a unique color and color-changing ability but also can be reversibly formed into complex shapes and bear significant loads even without being encased in a supporting polymer. The tensile strength of treated fibers shows a statistically significant increase (+12%), and evaluation of the fiber-to-matrix adhesion of these polymers to an epoxy resin shows more than 300% improvement over control fibers. This approach creates a new platform for the multifaceted advance of smart composites.


Assuntos
Fibra de Carbono/química , Resinas Acrílicas/química , Adesivos/química , Cor , Compostos de Diazônio/química , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Resistência ao Cisalhamento , Solventes/química , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA