Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Eur Radiol Exp ; 8(1): 76, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38981998

RESUMO

BACKGROUND: Clinical imaging tools to probe aggressiveness of renal masses are lacking, and T2-weighted imaging as an integral part of magnetic resonance imaging protocol only provides qualitative information. We developed high-resolution and accelerated T2 mapping methods based on echo merging and using k-t undersampling and reduced flip angles (TEMPURA) and tested their potential to quantify differences between renal tumour subtypes and grades. METHODS: Twenty-four patients with treatment-naïve renal tumours were imaged: seven renal oncocytomas (RO); one eosinophilic/oncocytic renal cell carcinoma; two chromophobe RCCs (chRCC); three papillary RCCs (pRCC); and twelve clear cell RCCs (ccRCC). Median, kurtosis, and skewness of T2 were quantified in tumours and in the normal-adjacent kidney cortex and were compared across renal tumour subtypes and between ccRCC grades. RESULTS: High-resolution TEMPURA depicted the tumour structure at improved resolution compared to conventional T2-weighted imaging. The lowest median T2 values were present in pRCC (high-resolution, 51 ms; accelerated, 45 ms), which was significantly lower than RO (high-resolution; accelerated, p = 0.012) and ccRCC (high-resolution, p = 0.019; accelerated, p = 0.008). ROs showed the lowest kurtosis (high-resolution, 3.4; accelerated, 4.0), suggestive of low intratumoural heterogeneity. Lower T2 values were observed in higher compared to lower grade ccRCCs (grades 2, 3 and 4 on high-resolution, 209 ms, 151 ms, and 106 ms; on accelerated, 172 ms, 160 ms, and 102 ms, respectively), with accelerated TEMPURA showing statistical significance in comparison (p = 0.037). CONCLUSIONS: Both high-resolution and accelerated TEMPURA showed marked potential to quantify differences across renal tumour subtypes and between ccRCC grades. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03741426 . Registered on 13 November 2018. RELEVANCE STATEMENT: The newly developed T2 mapping methods have improved resolution, shorter acquisition times, and promising quantifiable readouts to characterise incidental renal masses.


Assuntos
Neoplasias Renais , Imageamento por Ressonância Magnética , Gradação de Tumores , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/classificação , Neoplasias Renais/patologia , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/classificação , Carcinoma de Células Renais/patologia , Adulto
2.
Exp Physiol ; 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923603

RESUMO

We evaluated the impacts of COVID-19 on multi-organ and metabolic function in patients following severe hospitalised infection compared to controls. Patients (n = 21) without previous diabetes, cardiovascular or cerebrovascular disease were recruited 5-7 months post-discharge alongside controls (n = 10) with similar age, sex and body mass. Perceived fatigue was estimated (Fatigue Severity Scale) and the following were conducted: oral glucose tolerance (OGTT) alongside whole-body fuel oxidation, validated magnetic resonance imaging and spectroscopy during resting and supine controlled exercise, dual-energy X-ray absorptiometry, short physical performance battery (SPPB), intra-muscular electromyography, quadriceps strength and fatigability, and daily step-count. There was a greater insulin response (incremental area under the curve, median (inter-quartile range)) during the OGTT in patients [18,289 (12,497-27,448) mIU/min/L] versus controls [8655 (7948-11,040) mIU/min/L], P < 0.001. Blood glucose response and fasting and post-prandial fuel oxidation rates were not different. This greater insulin resistance was not explained by differences in systemic inflammation or whole-body/regional adiposity, but step-count (P = 0.07) and SPPB scores (P = 0.004) were lower in patients. Liver volume was 28% greater in patients than controls, and fat fraction adjusted liver T1, a measure of inflammation, was raised in patients. Patients displayed greater perceived fatigue scores, though leg muscle volume, strength, force-loss, motor unit properties and post-exercise muscle phosphocreatine resynthesis were comparable. Further, cardiac and cerebral architecture and function (at rest and on exercise) were not different. In this cross-sectional study, individuals without known previous morbidity who survived severe COVID-19 exhibited greater insulin resistance, pointing to a need for physical function intervention in recovery.

3.
Magn Reson Med ; 92(3): 1138-1148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730565

RESUMO

PURPOSE: To develop a highly accelerated multi-echo spin-echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. METHODS: TEMPURA merges several adjacent echoes into one k-space by either combining independent echoes or sharing one echo between k-spaces. The combined k-space is reconstructed based on compressed sensing theory. Reduced flip angles are used for the refocusing pulses, and the extended phase graph algorithm is used to correct the effects of indirect echoes. Two sequences were developed: a fast breath-hold sequence; and a high-resolution sequence. The performance was evaluated prospectively on a phantom, 16 healthy subjects, and two patients with different types of renal tumors. RESULTS: The fast TEMPURA method reduced the acquisition time from 3-5 min to one breath-hold (18 s). Phantom measurements showed that fast TEMPURA had a mean absolute percentage error (MAPE) of 8.2%, which was comparable to a standardized respiratory-triggered sequence (7.4%), but much lower than a sequence accelerated by purely k-t undersampling (21.8%). High-resolution TEMPURA reduced the in-plane voxel size from 3 × 3 to 1 × 1 mm2, resulting in improved visualization of the detailed anatomical structure. In vivo T2 measurements demonstrated good agreement (fast: MAPE = 1.3%-2.5%; high-resolution: MAPE = 2.8%-3.3%) and high correlation coefficients (fast: R = 0.85-0.98; high-resolution: 0.82-0.96) with the standardized method, outperforming k-t undersampling alone (MAPE = 3.3-4.5%, R = 0.57-0.59). CONCLUSION: TEMPURA provides fast and high-resolution renal T2 measurements. It has the potential to improve clinical throughput and delineate intratumoral heterogeneity and tissue habitats at unprecedented spatial resolution.


Assuntos
Algoritmos , Neoplasias Renais , Rim , Imagens de Fantasmas , Humanos , Neoplasias Renais/diagnóstico por imagem , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Feminino , Adulto , Masculino , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Suspensão da Respiração
4.
J Magn Reson Imaging ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819593

RESUMO

BACKGROUND: In respiratory medicine, there is a need for sensitive measures of regional lung function that can be performed using standard imaging technology, without the need for inhaled or intravenous contrast agents. PURPOSE: To describe VOxel-wise Lung VEntilation (VOLVE), a new method for quantifying regional lung ventilation (V) and perfusion (Q) using free-breathing proton MRI, and to evaluate VOLVE in healthy never-smokers, healthy people with smoking history, and people with chronic obstructive pulmonary disease (COPD). STUDY TYPE: Prospective pilot. POPULATION: Twelve healthy never-smoker participants (age 30.3 ± 12.5 years, five male), four healthy participants with smoking history (>10 pack-years) (age 42.5 ± 18.3 years, one male), and 12 participants with COPD (age 62.8 ± 11.1 years, seven male). FIELD STRENGTH/SEQUENCE: Single-slice free-breathing two-dimensional fast field echo sequence at 3 T. ASSESSMENT: A novel postprocessing was developed to evaluate the MR signal changes in the lung parenchyma using a linear regression-based approach, which makes use of all the data in the time series for maximum sensitivity. V/Q-weighted maps were produced by computing the cross-correlation, lag and gradient between the respiratory/cardiac phase time course and lung parenchyma signal time courses. A comparison of histogram median and skewness values and spirometry was performed. STATISTICAL TESTS: Kruskal-Wallis tests with Dunn's multiple comparison tests to compare VOLVE metrics between groups; Spearman correlation to assess the correlation between MRI and spirometry-derived parameters; and Bland-Altman analysis and coefficient of variation to evaluate repeatability were used. A P-value <0.05 was considered significant. RESULTS: Significant differences between the groups were found for ventilation between healthy never-smoker and COPD groups (median XCCV, LagV, and GradV) and perfusion (median XCCQ, LagQ, and GradQ). Minimal bias and no significant differences between intravisit scans were found (P range = 0.12-0.97). DATA CONCLUSION: This preliminary study showed that VOLVE has potential to provide metrics of function quantification. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

5.
J Magn Reson Imaging ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334370

RESUMO

There has been growing interest in using quantitative magnetic resonance imaging (MRI) to describe and understand the pathophysiology of acute kidney injury (AKI). The ability to assess kidney blood flow, perfusion, oxygenation, and changes in tissue microstructure at repeated timepoints is hugely appealing, as this offers new possibilities to describe nature and severity of AKI, track the time-course to recovery or progression to chronic kidney disease (CKD), and may ultimately provide a method to noninvasively assess response to new therapies. This could have significant clinical implications considering that AKI is common (affecting more than 13 million people globally every year), harmful (associated with short and long-term morbidity and mortality), and currently lacks specific treatments. However, this is also a challenging area to study. After the kidney has been affected by an initial insult that leads to AKI, complex coexisting processes ensue, which may recover or can progress to CKD. There are various preclinical models of AKI (from which most of our current understanding derives), and these differ from each other but more importantly from clinical AKI. These aspects are fundamental to interpreting the results of the different AKI studies in which renal MRI has been used, which encompass different settings of AKI and a variety of MRI measures acquired at different timepoints. This review aims to provide a comprehensive description and interpretation of current studies (both preclinical and clinical) in which MRI has been used to assess AKI, and discuss future directions in the field. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.

6.
J Magn Reson Imaging ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380700

RESUMO

BACKGROUND: T2 mapping is valuable to evaluate pathophysiology in kidney disease. However, variations in T2 relaxation time measurements across MR scanners and vendors may occur requiring additional correction. PURPOSE: To harmonize renal T2 measurements between MR vendor platforms, and use an extended-phase-graph-based fitting method ("StimFit") to correct stimulated echoes and reduce between-vendor variations. STUDY TYPE: Prospective. SUBJECTS: 8 healthy "travelling" volunteers (37.5% female, 32 ± 6 years) imaged on four MRI systems across three vendors at four sites, 10 healthy volunteers (50% female, 32 ± 8 years) scanned multiple times on a given MR scanner for repeatability evaluation. ISMRM/NIST system phantom scanned for evaluation of T2 accuracy. FIELD STRENGTH/SEQUENCE: 3T, multiecho spin-echo sequence. ASSESSMENT: T2 images fit using conventional monoexponential fitting and "StimFit." Mean absolute percentage error (MAPE) of phantom measurements with reference T2 values. Average cortex and medulla T2 values compared between MR vendors, with masks obtained from T2 -weighted images and T1 maps. Full-width-at-half-maximum (FWHM) T2 distributions to evaluate local homogeneity of measurements. STATISTICAL TESTS: Coefficient of variation (CV), linear mixed-effects model, analysis of variance, student's t-tests, Bland-Altman plots, P-value <0.05 considered statistically significant. RESULTS: In the ISMRM/NIST phantom, "StimFit" reduced the MAPE from 4.9%, 9.1%, 24.4%, and 18.1% for the four sites (three vendors) to 3.3%, 3.0%, 6.6%, and 4.1%, respectively. In vivo, there was a significant difference in kidney T2 measurements between vendors using a monoexponential fit, but not with "StimFit" (P = 0.86 and 0.92, cortex and medulla, respectively). The intervendor CVs of T2 measures were reduced from 8.0% to 2.6% (cortex) and 7.1% to 2.8% (medulla) with StimFit, resulting in no significant differences for the CVs of intravendor repeat acquisitions (P = 0.13 and 0.05). "StimFit" significantly reduced the FWHM of T2 distributions in the cortex and whole kidney. DATA CONCLUSION: Stimulated-echo correction reduces renal T2 variation across MR vendor platforms. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

7.
Nephrol Dial Transplant ; 39(2): 233-241, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37433572

RESUMO

BACKGROUND: Ischaemic end-organ damage during haemodialysis (HD) is a significant problem that may be ameliorated by intradialytic cooling. A randomised trial was performed to compare standard HD (SHD; dialysate temperature 37°C) and programmed cooling of the dialysate [thermocontrolled HD (TCHD)] using multiparametric magnetic resonance imaging (MRI) to assess structural, functional and blood flow changes in the heart, brain and kidneys. METHODS: Prevalent HD patients were randomly allocated to receive either SHD or TCHD for 2 weeks before undergoing serial MRI at four time points: pre-, during (30 min and 180 min) and post-dialysis. MRI measures include cardiac index, myocardial strain, longitudinal relaxation time (T1), myocardial perfusion, internal carotid and basilar artery flow, grey matter perfusion and total kidney volume. Participants then crossed to the other modality to repeat the study protocol. RESULTS: Eleven participants completed the study. Separation in blood temperature between TCHD (-0.1 ± 0.3°C) and SHD (+0.3 ± 0.2°C; P = .022) was observed, although there was no difference in tympanic temperature changes between arms. There were significant intradialytic reductions in cardiac index, cardiac contractility (left ventricular strain), left carotid and basilar artery blood flow velocities, total kidney volume, longitudinal relaxation time (T1) of the renal cortex and transverse relaxation rate (T2*) of the renal cortex and medulla, but no differences between arms. Pre-dialysis T1 of the myocardium and left ventricular wall mass index were lower after 2 weeks of TCHD compared with SHD [1266 ms (interquartile range 1250-1291) versus 1311 ± 58 ms, P = .02; 66 ± 22 g/m2 versus 72 ± 23 g/m2, P = .004]. CONCLUSIONS: HD adversely affects cardiac function, reduces carotid and basilar artery blood flow and total kidney volume, but mild dialysate cooling using a biofeedback module did not result in differences in intradialytic MRI measures compared with SHD.


Assuntos
Falência Renal Crônica , Diálise Renal , Humanos , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Rim , Soluções para Diálise , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
8.
J Clin Med ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068333

RESUMO

BACKGROUND: Multiparametric renal Magnetic Resonance Imaging (MRI) provides a non-invasive method to assess kidney structure and function, but longitudinal studies are limited. METHODS: A total of 22 patients with CKD category G3-4 (estimated glomerular filtration rate (eGFR) 15-59 mL/min/1.73 m2) were recruited. Annual 3T multiparametric renal MRI scans were performed, comprising total kidney volume (TKV), longitudinal relaxation time (T1), apparent diffusion coefficient (ADC), Arterial Spin Labelling, and Blood Oxygen Level Dependent relaxation time (T2*), with 15 patients completing a Year 2 scan. CKD progression over 2 years was defined as eGFR_slope ≥ -5 mL/min/1.73 m2/year. RESULTS: At baseline, T1 was higher (cortex p = 0.05, medulla p = 0.03) and cortex perfusion lower (p = 0.015) in participants with subsequent progression versus stable eGFR. A significant decrease in TKV and ADC and an increase in cortex T1 occurred in progressors at Year 1 and Year 2, with a significant decrease in perfusion in progressors only at Year 2. The only decline in the stable group was a reduction in TKV. There was no significant change in cortex or medulla T2* at Year 1 or Year 2 for progressors or stable participants. CONCLUSION: Lower renal cortex perfusion and higher T1 in the cortex and medulla may predict CKD progression, while renal cortex T1, TKV, and ADC may be useful to monitor progression. This study provides pilot data for future large-scale studies.

9.
Front Neurosci ; 17: 1265815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125406

RESUMO

Background: Alterations in resting state functional connectivity (rs-FC) in Crohn's Disease (CD) have been documented in default mode network (DMN) and frontal parietal network (FPN) areas, visual, cerebellar, salience and attention resting-state-networks (RSNs), constituting a CD specific neural phenotype. To date, most studies are in patients in remission, with limited studies in active disease. Methods: Twenty five active CD cases and 25 age-, BMI- and gender-matched healthy controls (HC) were recruited to a resting-state-functional Magnetic Resonance Imaging (rs-fMRI) study. Active disease was defined as C-reactive protein>5 mg/dL, faecal calprotectin>250 µg/g, or through ileocolonoscopy or MRE. rs-fMRI data were analysed using independent component analysis (ICA) and dual regression. Differences in RSNs between HCs and active CD were assessed, and rs-FC was associated with disease duration and abdominal pain. Results: Increased connectivity in the FPN (fusiform gyrus, thalamus, caudate, posterior cingulate cortex, postcentral gyrus) and visual RSN (orbital frontal cortex) were observed in CD versus HC. Decreased activity was observed in the salience network (cerebellum, postcentral gyrus), DMN (parahippocampal gyrus, cerebellum), and cerebellar network (occipital fusiform gyrus, cerebellum) in CD versus HCs. Greater abdominal pain scores were associated with lower connectivity in the precuneus (visual network) and parietal operculum (salience network), and higher connectivity in the cerebellum (frontal network). Greater disease duration was associated with greater connectivity in the middle temporal gyrus and planum temporale (visual network). Conclusion: Alterations in rs-FC in active CD in RSNs implicated in cognition, attention, emotion, and pain may represent neural correlates of chronic systemic inflammation, abdominal pain, disease duration, and severity.

10.
Magn Reson Med ; 90(3): 1130-1136, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222226

RESUMO

The British and Irish Chapter of the International Society for Magnetic Resonance in Medicine (BIC-ISMRM) held a workshop entitled "Steps on the path to clinical translation" in Cardiff, UK, on 7th September 2022. The aim of the workshop was to promote discussion within the MR community about the problems and potential solutions for translating quantitative MR (qMR) imaging and spectroscopic biomarkers into clinical application and drug studies. Invited speakers presented the perspectives of radiologists, radiographers, clinical physicists, vendors, imaging Contract/Clinical Research Organizations (CROs), open science networks, metrologists, imaging networks, and those developing consensus methods. A round-table discussion was held in which workshop participants discussed a range of questions pertinent to clinical translation of qMR imaging and spectroscopic biomarkers. Each group summarized their findings via three main conclusions and three further questions. These questions were used as the basis of an online survey of the broader UK MR community.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética , Biomarcadores
11.
Am J Kidney Dis ; 82(4): 491-504, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37187282

RESUMO

Recent advances in multiparametric magnetic resonance imaging (MRI) allow multiple quantitative measures to assess kidney morphology, tissue microstructure, oxygenation, kidney blood flow, and perfusion to be collected in a single scan session. Animal and clinical studies have investigated the relationship between the different MRI measures and biological processes, although their interpretation can be complex due to variations in study design and generally small participant numbers. However, emerging themes include the apparent diffusion coefficient derived from diffusion-weighted imaging, T1 and T2 mapping parameters, and cortical perfusion being consistently associated with kidney damage and predicting kidney function decline. Blood oxygen level-dependent (BOLD) MRI has shown inconsistent associations with kidney damage markers but has been predictive of kidney function decline in several studies. Therefore, multiparametric MRI of the kidneys has the potential to address the limitations of existing diagnostic methods to provide a noninvasive, noncontrast, and radiation-free method to assess whole kidney structure and function. Barriers to be overcome to facilitate widespread clinical application include improved understanding of biological factors that impact MRI measures, development of a larger evidence base for clinical utility, standardization of MRI protocols, automation of data analysis, determining optimal combination of MRI measures, and health economic evaluation.


Assuntos
Nefropatias , Oxigênio , Animais , Humanos , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Nefropatias/patologia , Circulação Renal
12.
Phys Med Biol ; 67(23)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36322986

RESUMO

Magnetic resonance elastography (MRE) is an MRI-based diagnostic method for measuring mechanical properties of biological tissues. MRE measurements are processed by an inversion algorithm to produce a map of the biomechanical properties. In this paper a new and powerful method (ensemble Kalman inversion with level sets (EKI)) of MRE inversion is proposed and tested. The method has critical advantages: material property variation at disease boundaries can be accurately identified, and uncertainty of the reconstructed material properties can be evaluated by consequence of the probabilistic nature of the method. EKI is tested in 2D and 3D experiments with synthetic MRE data of the human kidney. It is demonstrated that the proposed inversion method is accurate and fast.


Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos
13.
Eur Radiol Exp ; 6(1): 52, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36274113

RESUMO

BACKGROUND: We annually monitored stable compensated cirrhosis (CC) patients to evaluate serial variation in blood serum, liver stiffness, and multiparametric magnetic resonance imaging (mpMRI) measures to provide reference change values (RCV) and sample size measures for future studies. METHODS: Patients were recruited from a prospectively followed CC cohort, with assessments at baseline and annually over three years. We report on blood markers, transient elastography liver stiffness measures (LSM) and noninvasive mpMRI (volume, T1 mapping, blood flow, perfusion) of the liver, spleen, kidneys, and heart in a stable CC group and a healthy volunteer (HV) group. Coefficient of variation over time (CoVT) and RCV are reported, along with hazard ratio to assess disease progression. Sample size estimates to power future trials of cirrhosis regression on mpMRI are presented. RESULTS: Of 60 CC patients enrolled, 28 with stable CC were followed longitudinally and compared to 10 HVs. CoVT in mpMRI measures was comparable between CC and HV groups. CoVT of Enhanced Liver Fibrosis score was low (< 5%) compared to Fibrosis-4 index (17.9%) and Aspartate Aminotransferase-to-Platelet-Ratio Index (19.4%). A large CoVT (20.7%) and RCV (48.3%) were observed for LSM. CoVT and RCV were low for liver, spleen, and renal T1 values (CoVT < 5%, RCV < 8%) and volume (CoVT < 10%, RCV < 16%); haemodynamic measures were high (CoVT 12-25%, RCV 16-47%). CONCLUSIONS: Evidence of low CoVT and RCV in multiorgan T1 values. RCV and sample size estimates are provided for future longitudinal multiorgan monitoring in CC patients. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02037867 , Registered: 05/01/2013.


Assuntos
Cirrose Hepática , Imageamento por Ressonância Magnética , Humanos , Aspartato Aminotransferases , Biomarcadores , Progressão da Doença , Fibrose , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Imageamento por Ressonância Magnética/métodos
14.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194620

RESUMO

fMRI studies that investigate somatotopic tactile representations in the human cortex typically use either block or phase-encoded stimulation designs. Event-related (ER) designs allow for more flexible and unpredictable stimulation sequences than the other methods, but they are less efficient. Here, we compared an efficiency-optimized fast ER design (2.8-s average intertrial interval; ITI) to a conventional slow ER design (8-s average ITI) for mapping voxelwise fingertip tactile tuning properties in the sensorimotor cortex of six participants at 7 Tesla. The fast ER design yielded more reliable responses compared with the slow ER design, but with otherwise similar tuning properties. Concatenating the fast and slow ER data, we demonstrate in each individual brain the existence of two separate somatotopically-organized tactile representations of the fingertips, one in the primary somatosensory cortex (S1) on the postcentral gyrus, and the other shared across the motor and premotor cortices on the precentral gyrus. In both S1 and motor representations, fingertip selectivity decreased progressively, from narrowly-tuned Brodmann area (BA) 3b and BA4a, respectively, toward associative parietal and frontal regions that responded equally to all fingertips, suggesting increasing information integration along these two pathways. In addition, fingertip selectivity in S1 decreased from the cortical representation of the thumb to that of the pinky.


Assuntos
Mapeamento Encefálico , Percepção do Tato , Mapeamento Encefálico/métodos , Dedos/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia
15.
J Magn Reson Imaging ; 55(2): 323-335, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140551

RESUMO

BACKGROUND: Phase-contrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PC-MRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PC-MRI as a clinically useful tool. PURPOSE: To build technical recommendations for the acquisition, processing, and analysis of renal 2D PC-MRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies. STUDY TYPE: Systematic consensus process using a modified Delphi method. POPULATION: Not applicable. SEQUENCE FIELD/STRENGTH: Renal fast gradient echo-based 2D PC-MRI. ASSESSMENT: An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4-10) years of experience in 2D PC-MRI formulated consensus statements on renal 2D PC-MRI in two rounds of surveys. Starting from a recently published systematic review article, literature-based and data-driven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated. STATISTICAL TESTS: Consensus was defined as ≥75% unanimity in response, and a clear preference was defined as 60-74% agreement among the experts. RESULTS: Among 60 statements, 57 (95%) achieved consensus after the second-round survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PC-MRI data acquisition, processing, and reporting. DATA CONCLUSION: These recommendations might promote a widespread adoption of renal PC-MRI, and may help foster the set-up of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PC-MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Rim , Imageamento por Ressonância Magnética , Consenso , Técnica Delphi , Humanos , Estudos Multicêntricos como Assunto , Circulação Renal
16.
Phys Med Biol ; 66(22)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678798

RESUMO

Objective.Magnetic resonance elastography (MRE) is widely adopted as a biomarker of liver fibrosis. However,in vivoMRE accuracy is difficult to assess.Approach.Finite element model (FEM) simulation was employed to evaluate liver MRE accuracy and inform methodological optimisation. MRE data was simulated in a 3D FEM of the human torso including the liver, and compared with spin-echo echo-planar imaging MRE acquisitions. The simulated MRE results were compared with the ground truth magnitude of the complex shear modulus (∣G*∣) for varying: (1) ground truth liver ∣G*∣; (2) simulated imaging resolution; (3) added noise; (4) data smoothing. Motion and strain-based signal-to-noise (SNR) metrics were evaluated on the simulated data as a means to select higher-quality voxels for preparation of acquired MRE summary statistics of ∣G*∣.Main results.The simulated MRE accuracy for a given ground truth ∣G*∣ was found to be a function of imaging resolution, motion-SNR and smoothing. At typical imaging resolutions, it was found that due to under-sampling of the MRE wave-field, combined with motion-related noise, the reconstructed simulated ∣G*∣ could contain errors on the scale of the difference between liver fibrosis stages, e.g. 54% error for ground truth ∣G*∣ = 1 kPa. Optimum imaging resolutions were identified for given ground truth ∣G*∣ and motion-SNR levels.Significance.This study provides important knowledge on the accuracy and optimisation of liver MRE. For example, for motion-SNR ≤ 5, to distinguish between liver ∣G*∣ of 2 and 3 kPa (i.e. early-stage liver fibrosis) it was predicted that the optimum isotropic voxel size is 4-6 mm.


Assuntos
Técnicas de Imagem por Elasticidade , Imagem Ecoplanar/métodos , Técnicas de Imagem por Elasticidade/métodos , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Movimento (Física)
17.
Aliment Pharmacol Ther ; 54(4): 368-387, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34228817

RESUMO

BACKGROUND: Fatigue is the inability to achieve or maintain an expected work output resulting from central or peripheral mechanisms. The prevalence of inflammatory bowel disease (IBD) fatigue can reach 86% in active disease, persisting in 50%-52% of patients with mild to inactive disease. Fatigue is the commonest reason for work absence in IBD, and patients often report fatigue burden to be greater than that of primary disease symptoms. Relatively few evidence-based treatment options exist, and the aetiology is poorly understood. AIM: To review the available data and suggest a possible aetiology of IBD fatigue and to consider the efficacy of existing management strategies and highlight potential future interventions. METHODS: We reviewed fatigue-related literature in IBD using PubMed database. RESULTS: Disease related factors such as inflammation and pharmacological treatments negatively impact skeletal muscle and brain physiology, likely contributing to fatigue symptoms. Secondary factors such as malnutrition, anaemia, sleep disturbance and psychological comorbidity are potential determinants. Immune profile, faecal microbiota composition and physical fitness differ significantly between fatigued and non-fatigued patients, suggesting these may be aetiological factors. Solution-focused therapy, high-dosage thiamine supplementation and biological therapy may reduce fatigue perception in IBD. The effect of physical activity interventions is inconclusive. CONCLUSIONS: A multimodal approach is likely required to treat IBD fatigue. Established reversible factors like anaemia, micronutrient deficiencies and active disease should initially be resolved. Psychosocial intervention shows potential efficacy in reducing fatigue perception in quiescent disease. Restoring physical deconditioning by exercise training intervention may further improve fatigue burden.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Exercício Físico , Fadiga/epidemiologia , Fadiga/etiologia , Fadiga/terapia , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/terapia , Aptidão Física , Qualidade de Vida
18.
Magn Reson Med ; 86(5): 2577-2588, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34196020

RESUMO

PURPOSE: Detecting sound-related activity using functional MRI requires the auditory stimulus to be more salient than the intense background scanner acoustic noise. Various strategies can reduce the impact of scanner acoustic noise, including "sparse" temporal sampling with single/clustered acquisitions providing intervals without any background scanner acoustic noise, or active noise cancelation (ANC) during "continuous" temporal sampling, which generates an acoustic signal that adds destructively to the scanner acoustic noise, substantially reducing the acoustic energy at the participant's eardrum. Furthermore, multiband functional MRI allows multiple slices to be collected simultaneously, thereby reducing scanner acoustic noise in a given sampling period. METHODS: Isotropic multiband functional MRI (1.5 mm) with sparse sampling (effective TR = 9000 ms, acquisition duration = 1962 ms) and continuous sampling (TR = 2000 ms) with ANC were compared in 15 normally hearing participants. A sustained broadband noise stimulus was presented to drive activation of both sustained and transient auditory responses within subcortical and cortical auditory regions. RESULTS: Robust broadband noise-related activity was detected throughout the auditory pathways. Continuous sampling with ANC was found to give a statistically significant advantage over sparse sampling for the detection of the transient (onset) stimulus responses, particularly in the auditory cortex (P < .001) and inferior colliculus (P < .001), whereas gains provided by sparse over continuous ANC for detecting offset and sustained responses were marginal (p ~ 0.05 in superior olivary complex, inferior colliculus, medial geniculate body, and auditory cortex). CONCLUSIONS: Sparse and continuous ANC multiband functional MRI protocols provide differing advantages for observing the transient (onset and offset) and sustained stimulus responses.


Assuntos
Córtex Auditivo , Ruído , Estimulação Acústica , Córtex Auditivo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
19.
Brain Behav ; 11(7): e02126, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34032379

RESUMO

INTRODUCTION: Resting cerebral blood flow (CBF) and perfusion measures have been used to determine brain health. Studies showing variation in resting CBF with age and fitness level using different imaging approaches have produced mixed findings. We assess the degree to which resting CBF measures through transcranial Doppler (TCD) and arterial spin labeling (ASL) MRI provide complementary information in older and younger, fit and unfit cohorts. METHODS: Thirty-five healthy volunteers (20 younger: 24 ± 7y; 15 older: 66 ± 7y) completed two experimental sessions (TCD/MRI). Aging and fitness effects within and between imaging modalities were assessed. RESULTS: Middle cerebral artery blood velocity (MCAv, TCD) was lower and transit time (MRI) slower in older compared with younger participants (p < .05). The younger group had higher gray matter cerebral perfusion (MRI) than the older group, albeit not significantly (p = .13). Surprisingly, fitness effects in the younger group (decrease/increase in MCAv/transit time with fitness, respectively) opposed the older group (increase/decrease in MCAv/transit time). Whole cohort transit times correlated with MCAv (r=-0.63; p < .05), whereas tissue perfusion did not correlate with TCD measures. CONCLUSION: TCD and MRI modalities provide complementary resting CBF measures, with similar effects across the whole cohort and between subgroups (age/fitness) if metrics are comparable (e.g., velocity [TCD] versus transit time [MRI]).


Assuntos
Circulação Cerebrovascular , Ultrassonografia Doppler Transcraniana , Idoso , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética , Marcadores de Spin
20.
Front Physiol ; 12: 656746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912073

RESUMO

Cerebrovascular reactivity (CVR) is used as an outcome measure of brain health. Traditionally, lower CVR is associated with ageing, poor fitness and brain-related conditions (e.g. stroke, dementia). Indeed, CVR is suggested as a biomarker for disease risk. However, recent findings report conflicting associations between ageing or fitness and CVR measures. Inconsistent findings may relate to different neuroimaging modalities used, which include transcranial Doppler (TCD) and blood-oxygen-level-dependant (BOLD) contrast magnetic resonance imaging (MRI). We assessed the relationship between CVR metrics derived from two common imaging modalities, TCD and BOLD MRI, within the same individuals and with expected significant differences (i.e., younger vs. older) to maximise the expected spread in measures. We conducted two serial studies using TCD- and MRI-derived measures of CVR (via inspired 5% CO2 in air). Study 1 compared 20 younger (24 ± 7 years) with 15 older (66 ± 7 years) participants, Study 2 compared 10 younger (22 ± 2 years) with 10 older (72 ± 4 years) participants. Combining the main measures across studies, no significant correlation (r = 0.15, p = 0.36) was observed between individual participant TCD- and BOLD-CVR measures. Further, these measures showed differential effects between age groups; with TCD-CVR higher in the older compared to younger group (4 ± 1 vs. 3 ± 1 %MCAv/mmHg P ET CO2; p < 0.05, Hedges' g = 0.75), whereas BOLD-CVR showed no difference (p = 0.104, Hedges' g = 0.38). In Study 2 additional measures were obtained to understand the origin of the discrepancy: phase contrast angiography (PCA) MRI of the middle cerebral artery, showed a significantly lower blood flow (but not velocity) CVR response in older compared with younger participants (p > 0.05, Hedges' g = 1.08). The PCA CVR metrics did not significantly correlate with the BOLD- or TCD-CVR measures. The differing CVR observations between imaging modalities were despite expected, correlated (r = 0.62-0.82), age-related differences in resting CBF measures across modalities. Taken together, findings across both studies show no clear relationship between TCD- and BOLD-CVR measures. We hypothesize that CVR differences between imaging modalities are in part due to the aspects of the vascular tree that are assessed (TCD:arteries; BOLD:venules/veins). Further work is needed to understand the between-modality CVR response differences, but caution is needed when comparing CVR metrics derived from different imaging modalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA