Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
4.
Atheroscler Plus ; 49: 32-41, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36644202

RESUMO

Background and aims: Randomized clinical studies have shown a reduction in cardiovascular outcomes with glucagon-like peptide 1 receptor agonist (GLP-1RA) treatment with the hypothesized mechanisms being an underlying effect on atherosclerosis. Here, we aimed to assess the pharmacological effects of semaglutide in an atheroprone murine model that recapitulates central mechanisms related to vascular smooth muscle cell (VSMC) phenotypic switching and endothelial dysfunction known to operate within the atherosclerotic plaque. Methods: In study A, we employed an electrical current to the carotid artery in ApoE-/- mice to induce severe VSMC injury and death, after which the arteries were allowed to heal for 4 weeks. In study B, a constrictive cuff was added for 6 h at the site of the healed segment to induce a disturbance in blood flow. Results: Compared to vehicle, semaglutide treatment reduced the intimal and medial area by ∼66% (p = 0.007) and ∼11% (p = 0.0002), respectively. Following cuff placement, expression of the pro-inflammatory marker osteopontin and macrophage marker Mac-2 was reduced (p < 0.05) in the semaglutide-treated group compared to vehicle. GLP-1R were not expressed in murine carotid artery and human coronary vessels with and without atherosclerotic plaques, and semaglutide treatment did not affect proliferation of cultured primary human VSMCs. Conclusions: Semaglutide treatment reduced vessel remodelling following electrical injury and blood flow perturbation in an atheroprone mouse model. This effect appears to be driven by anti-inflammatory and -proliferative mechanisms independent of GLP-1 receptor-mediated signalling in the resident vascular cells. This mechanism of action may be important for cardiovascular protection.

6.
Int J Pharm ; 577: 119041, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978463

RESUMO

Pullulan is a natural polysaccharide of potential interest for biomedical applications due to its non-toxic, non-immunogenic and biodegradable properties. The aim of this work was to synthesize cationic pullulan derivatives able to form complexes with microRNAs (miRNAs) driven by electrostatic interaction (polyplexes). Quaternized ammonium groups were linked to pullulan backbone by adding the reactive glycidyltrimethylammonium chloride (GTMAC). The presence of these cationic groups within the pullulan was confirmed by elemental analysis, Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The alkylated pullulan was able to interact with miRNA and form stable polyplexes that were characterized regarding size, zeta potential and morphology. The presence of miRNA was confirmed by agarose gel electrophoresis and UV spectrophotometry. In vitro tests on human umbilical vein endothelial cells did not show any cytotoxicity after 1 day of incubation with nanosized polyplexes up to 200 µg/mL. QA-pullulan was able to promote miRNA delivery inside cells as demonstrated by fluorescence microscopy images of labelled miRNA. In conclusion, the formation of polyplexes using cationic derivatives of pullulan with miRNA provided an easy and versatile method for polysaccharide nanoparticle production in aqueous media and could be a new promising platform for gene delivery.


Assuntos
Técnicas de Transferência de Genes , Glucanos/química , MicroRNAs/administração & dosagem , Cátions , Compostos de Epóxi/química , Glucanos/síntese química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Compostos de Amônio Quaternário/química , Eletricidade Estática
7.
J Am Coll Cardiol ; 73(9): 1043-1054, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30846099

RESUMO

BACKGROUND: Intraleaflet hematomas are associated with advanced stages of aortic valve calcification and suspected to be involved in disease progression. However, the mechanism by which the entry of blood cells into the valves affects the biology of aortic valvular interstitial cells (VICs) remains to be elucidated. OBJECTIVES: This study sought to evaluate the putative link between intraleaflet hematoma and aortic valve calcification and to assess its pathophysiological implications. METHODS: The spatial relationship between calcium deposits and intraleaflet hematomas was analyzed by whole-mount staining of calcified and noncalcified human aortic valves, obtained in the context of heart transplantation and from patients who underwent surgical valve replacement. Endothelial microfissuring was evaluated by en face immunofluorescence and scanning electron microscopic analyses of the fibrosa surface. Red blood cell (RBC) preparations were used in vitro to assess, by immunofluorescence microscopy and Alizarin red staining, the potential impact of intraleaflet hematomas on phenotypic changes in VICs. RESULTS: Intraleaflet hematomas, revealed by iron deposits and RBCs into the fibrosa, secondary to endothelial microfissuring, were consistently found in noncalcified valves. The contact of primary VICs derived from these valves with RBCs resulted in a global inflammatory and osteoblastic phenotype, reflected by the up-regulation of interleukin-6, interleukin-1ß, bone sialoprotein, osteoprotegerin, receptor activator of nuclear factor kappa B, bone morphogenic protein 2, and muscle segment homeobox 2, the production of osteocalcin, and the formation of calcium deposits. CONCLUSIONS: The acquisition of an osteoblastic phenotype in VICs that come into contact with the senescent RBCs of intraleaflet hematomas may play a critical role in the initiation of calcium deposition into the fibrosa of human aortic valves.


Assuntos
Estenose da Valva Aórtica/diagnóstico , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Calcinose/diagnóstico , Cálcio/metabolismo , Ferro/metabolismo , Idoso , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/metabolismo , Calcinose/metabolismo , Células Cultivadas , Progressão da Doença , Endotélio Vascular/metabolismo , Endotélio Vascular/ultraestrutura , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Pessoa de Meia-Idade , Fenótipo
8.
Eur Heart J ; 40(11): 928-937, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30541066

RESUMO

AIMS: Inflammatory mediators, including blood cells and their products, contribute critically to atherogenesis, but the igniting triggers of inflammation remain elusive. Atherosclerosis develops at sites of flow perturbation, where the enhanced haemodynamic stress could initiate the atherogenic inflammatory process due to the occurrence of mechanic injury. We investigated the role of haemodynamic stress-induced breaches, allowing the entry of blood cells in the arterial intima, in triggering inflammation-driven atherogenesis. METHODS AND RESULTS: Human coronary samples isolated from explanted hearts, (n = 47) displayed signs of blood entry (detected by the presence of iron, ferritin, and glycophorin A) in the subintimal space (54%) as assessed by histology, immunofluorescence, high resolution episcopic microscopy, and scanning electron microscopy. Computational flow dynamic analysis showed that intimal haemorrhagic events occurred at sites of flow disturbance. Experimental carotid arteries from Apoe deficient mice showed discrete endothelial breaches and intimal haemorrhagic events specifically occurring at the site of flow perturbation, within 3 days after the exacerbation of the local haemodynamic stress. Endothelial tearing was associated with increased VCAM-1 expression and, within 7 days, substantial Ly6G+ leucocytes accumulated at the sites of erythrocyte-derived iron and lipids droplets accumulation, pathological intimal thickening and positive oil red O staining. The formation of fatty streaks at the sites of intimal breaches was prevented by the depletion of Ly6G+ leucocytes, suggesting that the local injury driven by haemodynamic stress-induced breaches triggers atherogenic inflammation. CONCLUSION: Haemodynamic-driven breaches of the arterial intima drive atherogenic inflammation by triggering the recruitment of leucocyte at sites of disturbed arterial flow.


Assuntos
Aterosclerose/metabolismo , Hemodinâmica/fisiologia , Inflamação/patologia , Túnica Íntima/patologia , Animais , Antígenos Ly/metabolismo , Apolipoproteínas E/deficiência , Velocidade do Fluxo Sanguíneo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Leucócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Mecânico , Túnica Íntima/lesões , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 38(8): 1901-1912, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29976772

RESUMO

Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1ß-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.


Assuntos
Coagulação Sanguínea , Catepsina G/metabolismo , Armadilhas Extracelulares/enzimologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Interleucina-1alfa/metabolismo , Neutrófilos/enzimologia , Comunicação Parácrina , Tromboplastina/metabolismo , Adesão Celular , Técnicas de Cocultura , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Transdução de Sinais , Células THP-1 , Tromboplastina/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Circ Res ; 123(1): 33-42, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29572206

RESUMO

RATIONALE: Neutrophils likely contribute to the thrombotic complications of human atheromata. In particular, neutrophil extracellular traps (NETs) could exacerbate local inflammation and amplify and propagate arterial intimal injury and thrombosis. PAD4 (peptidyl arginine deiminase 4) participates in NET formation, but an understanding of this enzyme's role in atherothrombosis remains scant. OBJECTIVE: This study tested the hypothesis that PAD4 and NETs influence experimental atherogenesis and in processes implicated in superficial erosion, a form of plaque complication we previously associated with NETs. METHODS AND RESULTS: Bone marrow chimeric Ldlr deficient mice reconstituted with either wild-type or PAD4-deficient cells underwent studies that assessed atheroma formation or procedures designed to probe mechanisms related to superficial erosion. PAD4 deficiency neither retarded fatty streak formation nor reduced plaque size or inflammation in bone marrow chimeric mice that consumed an atherogenic diet. In contrast, either a PAD4 deficiency in bone marrow-derived cells or administration of DNaseI to disrupt NETs decreased the extent of arterial intimal injury in mice with arterial lesions tailored to recapitulate characteristics of human atheroma complicated by erosion. CONCLUSIONS: These results indicate that PAD4 from bone marrow-derived cells and NETs do not influence chronic experimental atherogenesis, but participate causally in acute thrombotic complications of intimal lesions that recapitulate features of superficial erosion.


Assuntos
Armadilhas Extracelulares/fisiologia , Hidrolases/fisiologia , Placa Aterosclerótica/etiologia , Trombose/etiologia , Animais , Transplante de Medula Óssea , Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/patologia , Morte Celular , Desoxirribonuclease I/farmacologia , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Hidrolases/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Osteomielite/etiologia , Placa Aterosclerótica/patologia , Proteína-Arginina Desiminase do Tipo 4 , Trombose/prevenção & controle , Túnica Íntima/lesões
12.
Curr Opin Lipidol ; 28(5): 434-441, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28682809

RESUMO

PURPOSE OF REVIEW: The present review explores the mechanisms of superficial intimal erosion, a common cause of thrombotic complications of atherosclerosis. RECENT FINDINGS: Human coronary artery atheroma that give rise to thrombosis because of erosion differ diametrically from those associated with fibrous cap rupture. Eroded lesions characteristically contain few inflammatory cells, abundant extracellular matrix, and neutrophil extracellular traps (NETs). Innate immune mechanisms such as engagement of Toll-like receptor 2 (TLR2) on cultured endothelial cells can impair their viability, attachment, and ability to recover a wound. Hyaluronan fragments may serve as endogenous TLR2 ligands. Mouse experiments demonstrate that flow disturbance in arteries with neointimas tailored to resemble features of human eroded plaques disturbs endothelial cell barrier function, impairs endothelial cell viability, recruits neutrophils, and provokes endothelial cells desquamation, NET formation, and thrombosis in a TLR2-dependent manner. SUMMARY: Mechanisms of erosion have received much less attention than those that provoke plaque rupture. Intensive statin treatment changes the characteristic of plaques that render them less susceptible to rupture. Thus, erosion may contribute importantly to the current residual burden of risk. Understanding the mechanisms of erosion may inform the development and deployment of novel therapies to combat the remaining atherothrombotic risk in the statin era.


Assuntos
Placa Aterosclerótica/patologia , Animais , Humanos , Placa Aterosclerótica/complicações , Placa Aterosclerótica/metabolismo , Trombose/complicações , Receptor 2 Toll-Like/metabolismo
13.
Circ Res ; 121(1): 31-42, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28428204

RESUMO

RATIONALE: Superficial erosion currently causes up to a third of acute coronary syndromes; yet, we lack understanding of its mechanisms. Thrombi because of superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. OBJECTIVE: This study tested in vivo the involvement of disturbed flow and of neutrophils, hyaluronan, and Toll-like receptor 2 ligation in superficial intimal injury, a process implicated in superficial erosion. METHODS AND RESULTS: In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell activation, neutrophil accumulation, endothelial cell death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. Toll-like receptor 2 agonism activated luminal endothelial cells, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing endothelial cell injury and local thrombosis (P<0.05). CONCLUSIONS: These results implicate flow disturbance, neutrophils, and Toll-like receptor 2 signaling as mechanisms that contribute to superficial erosion, a cause of acute coronary syndrome of likely growing importance in the statin era.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Endotélio Vascular/metabolismo , Infiltração de Neutrófilos/fisiologia , Receptor 2 Toll-Like/deficiência , Animais , Transplante de Medula Óssea/métodos , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Células Cultivadas , Endotélio Vascular/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
J Biomech ; 49(14): 3467-3475, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27665352

RESUMO

The purpose of this study was to evaluate the diameter and thickness-related variations in mechanical properties of degraded arterial wall. To this end, ring tests were performed on 31 samples from the rat xenograft model of abdominal aortic aneurysm (AAA) and failure properties were determined. An inverse finite element method was then employed to identify the material parameters of a hyperelastic and incompressible strain energy function. Correlations with outer diameter and wall thickness of the rings were examined. Furthermore, we investigated the changes in mechanical properties between the grafts, which consist in guinea pig decellularized aortas, native murine aortas and degraded aortas (AAAs). Decellularized aortas presented a significantly lower ultimate strain associated with a higher stiffening rate compared to native aortas. AAAs exhibited a significantly lower ultimate stress than other groups and an extensible-but-stiff behavior. The proposed approach revealed correlations of ultimate stress and material parameters of aneurysmal aortas with outer diameter and thickness. In particular, the negative correlations of the material parameter accounting for the response of the non-collagenous matrix with diameter and thickness (r=-0.67 and r=-0.73, p<0.001) captured the gradual loss of elastin with dilatation observed in histology (r=-0.97, p<0.001). Moreover, it exposed the progressive weakening of the wall with enlargement and thickening (r=-0.64 and r=-0.69, p<0.001), suggesting that wall thickness and diameter may be indicators of rupture risk in the rat xenograft model.


Assuntos
Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/fisiopatologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Fenômenos Biomecânicos , Modelos Animais de Doenças , Elastina/metabolismo , Análise de Elementos Finitos , Cobaias , Xenoenxertos , Masculino , Modelos Biológicos , Ratos , Ratos Endogâmicos F344
15.
FASEB J ; 30(9): 3216-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297585

RESUMO

Thrombogenic and inflammatory mediators, such as thrombin, induce NF-κB-mediated endothelial cell (EC) activation and dysfunction, which contribute to pathogenesis of arterial thrombosis. The role of anti-inflammatory microRNA-181b (miR-181b) on thrombosis remains unknown. Our previous study demonstrated that miR-181b inhibits downstream NF-κB signaling in response to TNF-α. Here, we demonstrate that miR-181b uniquely inhibits upstream NF-κB signaling in response to thrombin. Overexpression of miR-181b inhibited thrombin-induced activation of NF-κB signaling, demonstrated by reduction of phospho-IKK-ß, -IκB-α, and p65 nuclear translocation in ECs. MiR-181b also reduced expression of NF-κB target genes VCAM-1, intercellular adhesion molecule-1, E-selectin, and tissue factor. Mechanistically, miR-181b targets caspase recruitment domain family member 10 (Card10), an adaptor protein that participates in activation of the IKK complex in response to signals transduced from protease-activated receptor-1. miR-181b reduced expression of Card10 mRNA and protein, but not protease-activated receptor-1. 3'-Untranslated region reporter assays, argonaute-2 microribonucleoprotein immunoprecipitation studies, and Card10 rescue studies revealed that Card10 is a bona fide direct miR-181b target. Small interfering RNA-mediated knockdown of Card10 expression phenocopied effects of miR-181b on NF-κB signaling and targets. Card10 deficiency did not affect TNF-α-induced activation of NF-κB signaling, which suggested stimulus-specific regulation of NF-κB signaling and endothelial responses by miR-181b in ECs. Finally, in response to photochemical injury-induced arterial thrombosis, systemic delivery of miR-181b reduced thrombus formation by 73% in carotid arteries and prolonged time to occlusion by 1.6-fold, effects recapitulated by Card10 small interfering RNA. These data demonstrate that miR-181b and Card10 are important regulators of thrombin-induced EC activation and arterial thrombosis. These studies highlight the relevance of microRNA-dependent targets in response to ligand-specific signaling in ECs.-Lin, J., He, S., Sun, X., Franck, G., Deng, Y., Yang, D., Haemmig, S., Wara, A. K. M., Icli, B., Li, D., Feinberg, M. W. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , MicroRNAs/metabolismo , Trombina/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Células Endoteliais , Endotélio Vascular , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , Camundongos , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Interferência de RNA , Transdução de Sinais/fisiologia , Síndrome do Desfiladeiro Torácico , Trombina/genética , Trombose/etiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Nat Mater ; 15(3): 335-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26752654

RESUMO

Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque's collagen content-two determinants of atherosclerotic plaque stability-are interlinked.


Assuntos
Aterosclerose/metabolismo , Vesículas Extracelulares/fisiologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Cálcio/metabolismo , Artérias Carótidas/patologia , Colágeno/metabolismo , Doença das Coronárias/metabolismo , Matriz Extracelular , Humanos , Camundongos , Camundongos Knockout
17.
J Steroid Biochem Mol Biol ; 152: 89-100, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25958048

RESUMO

High plasma exposure to estrogens is often associated with prostate cancer. Reducing this phenomenon may present therapeutic benefits. The involvement of estrone sulphate (E1S), the most abundant circulating estrogen in men, has been partially studied in this age-related pathology. To investigate the consequences of plasma E1S overload on blood and prostate sex steroid levels and inflammatory tissue responses, young and middle-aged male rats were treated with E1S with or without steroid sulfatase (STS) inhibitor STX64 for 21 consecutive days. A plasma and prostate tissue steroid profile was determined. STS activity, mRNA expression of E1S organic anion transporting polypeptides (slco1a2, slco2b1, slco4a1) and pro-inflammatory cytokines (Il1-beta, Il6, TNF-alpha) were evaluated in prostate tissue according to age and treatment group. A significant correlation between plasma and prostate steroid levels related to hormone treatment was observed in all rat age groups. However, while the E1S level in prostate tissue increased in middle-aged treated rats (p<0.0001), no significant variation was observed in young treated rats. The protective effect of STX64 during E1S infusion was observed by the maintenance of low free estrogen concentrations in both plasma and tissue. However, this protection was not associated with mRNA expression stability of pro-inflammatory cytokines in older rat prostate. These results suggest that E1S uptake in rat prostate cells increases during aging. Therefore, if a similar phenomenon existed in men, preventively reducing the STS activity could be of interest to limit uptake of estrogens in prostate when high E1S plasma level is assayed.


Assuntos
Estrogênios/sangue , Estrona/análogos & derivados , Próstata/metabolismo , Esteril-Sulfatase/antagonistas & inibidores , Ácidos Sulfônicos/farmacologia , Fatores Etários , Animais , Antiporters/biossíntese , Antiporters/genética , Transporte Biológico , Citocinas/biossíntese , Citocinas/genética , Estrogênios/farmacologia , Estrogênios Conjugados (USP)/farmacologia , Estrona/metabolismo , Estrona/farmacologia , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Masculino , Modelos Animais , Transportadores de Ânions Orgânicos/biossíntese , Transportadores de Ânions Orgânicos/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley
18.
Eur Heart J ; 36(22): 1394-404, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25755115

RESUMO

AIMS: Superficial erosion of atheromata causes many acute coronary syndromes, but arises from unknown mechanisms. This study tested the hypothesis that Toll-like receptor-2 (TLR2) activation contributes to endothelial apoptosis and denudation and thus contributes to the pathogenesis of superficial erosion. METHODS AND RESULTS: Toll-like receptor-2 and neutrophils localized at sites of superficially eroded human plaques. In vitro, TLR2 ligands (including hyaluronan, a matrix macromolecule abundant in eroded lesions) induced endothelial stress, characterized by reactive oxygen species production, endoplasmic reticulum (ER) stress, and apoptosis. Co-incubation of neutrophils with endothelial cells (ECs) potentiated these effects and induced EC apoptosis and detachment. We then categorized human atherosclerotic plaques (n = 56) based on morphologic features associated with superficial erosion, 'stable' fibrotic, or 'vulnerable' lesions. Morphometric analyses of the human atheromata localized neutrophils and neutrophil extracellular traps (NETs) near clusters of apoptotic ECs in smooth muscle cell (SMC)-rich plaques. The number of luminal apoptotic ECs correlated with neutrophil accumulation, amount of NETs, and TLR2 staining in SMC-rich plaques, but not in 'vulnerable' atheromata. CONCLUSION: These in vitro observations and analyses of human plaques indicate that TLR2 stimulation followed by neutrophil participation may render smooth muscle cell-rich plaques susceptible to superficial erosion and thrombotic complications by inducing ER stress, apoptosis, and favouring detachment of EC.


Assuntos
Apoptose/fisiologia , Neutrófilos/fisiologia , Placa Aterosclerótica/fisiopatologia , Receptor 2 Toll-Like/fisiologia , Síndrome Coronariana Aguda/etiologia , Síndrome Coronariana Aguda/fisiopatologia , Biomarcadores/metabolismo , Caspases/metabolismo , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Fluoresceínas/farmacologia , Corantes Fluorescentes/farmacologia , Humanos , Ácido Hialurônico/farmacologia , Elastase de Leucócito/metabolismo , Leucócitos Mononucleares/metabolismo , Músculo Liso Vascular/metabolismo , Proteína Fosfatase 1/metabolismo , RNA Interferente Pequeno/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ruptura Espontânea/fisiopatologia , Estresse Fisiológico/fisiologia , Receptor 2 Toll-Like/agonistas , Fator de Transcrição CHOP/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 34(8): 1747-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24876351

RESUMO

OBJECTIVE: Inflammation plays a critical role in the development of abdominal aortic aneurysms (AAAs). Because stromal cell-derived factor 1 (SDF-1) is known for its ability to attract inflammatory cells, we investigated whether SDF-1/chemokine (C-X-C motif) receptor 4 (CXCR4) axis is expressed in aneurysmal aortic wall and plays a role in AAA physiopathology and asked whether its blockade modulates AAA formation and expansion. APPROACH AND RESULTS: Quantitative real-time polymerase chain reaction analysis showed that SDF-1α and CXCR4 mRNA levels are increased in both human and CaCl2-induced mouse AAA wall and are positively correlated to the aortic diameter in mice. ELISA quantification and immunostaining demonstrated that, in mice, aortic SDF-1α is rapidly induced during AAA formation, first by apoptotic vascular smooth muscle cells in the injured media and then by adventitial macrophages once AAA is fully established. Using green fluorescent protein-positive (GFP(+/-)) bone marrow transplantation experiments, we demonstrated that aortic SDF-1 overexpression is implicated in the recruitment of bone marrow-derived macrophages within the AAA wall. Furthermore, in mice, blockade of CXCR4 by AMD3100 decreases the infiltration of adventitial macrophages, inhibits AAA formation, and prevents aortic wall destruction. AMD3100 reduces the mRNA levels of MMP-12 and MMP-14 as well as that of inflammatory effectors MCP-1, MIP-1ß, MIP-2α, RANTES, IL-1ß, IL-6, TNF-α, and E-selectin. Finally, AMD3100 stabilizes the diameter of formed, expanding AAAs in 2 experimental models. CONCLUSIONS: SDF-1/CXCR4 axis is upregulated in human and mouse AAAs. Blockade of CXCR4 with AMD3100 suppresses AAA formation and progression in two rodent models. Blockade of SDF-1/CXCR4 axis may represent a new strategy to limit progression of small human AAAs.


Assuntos
Anti-Inflamatórios/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Compostos Heterocíclicos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Animais , Aorta Abdominal/imunologia , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Benzilaminas , Transplante de Medula Óssea , Cloreto de Cálcio , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiotaxia/efeitos dos fármacos , Ciclamos , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Cobaias , Xenoenxertos , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Fatores de Tempo , Células U937
20.
Arterioscler Thromb Vasc Biol ; 34(6): 1179-86, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24723558

RESUMO

OBJECTIVE: Substantial evidence implicates interstitial collagenases of the matrix metalloproteinase (MMP) family in plaque rupture and fatal thrombosis. Understanding the compensatory mechanisms that may influence the expression of these enzymes and their functions, therefore, has important clinical implications. This study assessed in mice the relative effect of the 2 principal mouse collagenases on collagen content and other plaque characteristics. APPROACH AND RESULTS: Apolipoprotein E-deficient (apoE(-/-)) mice, MMP-13(-/-) apoE(-/-), MMP-8(-/-) apoE(-/-) double knockout mice, and MMP-13(-/-) MMP-8(-/-) apoE(-/-) triple knockout mice consumed a high-cholesterol diet for 10 and 24 weeks. Both double knockout and triple knockout mice showed comparable atherosclerotic lesion formation compared with apoE(-/-) controls. Analysis of aortic root sections indicated that lesions of MMP-8/MMP-13-deficient and MMP-13-deficient mice accumulate more fibrillar collagen than apoE(-/-) controls and MMP-8(-/-) apoE(-/-) double knockout. We further tested the relative effect of MMPs on plaque collagenolysis using in situ zymography. MMP-13 deletion alone abrogated collagenolytic activity in lesions, indicating a predominant role for MMP-13 in this process. MMP-13 and MMP-13/MMP-8 deficiency did not alter macrophage content but associated with reduced accumulation of smooth muscle cells. CONCLUSIONS: These results show that among MMP interstitial collagenases in mice, MMP-13 prevails over MMP-8 in collagen degradation in atheromata. These findings provide a rationale for the identification and selective targeting a predominant collagenase for modulating key aspects of plaque structure considered critical in clinical complications, although they do not translate directly to human lesions, which also contain MMP-1.


Assuntos
Aterosclerose/etiologia , Metaloproteinase 13 da Matriz/fisiologia , Metaloproteinase 8 da Matriz/fisiologia , Animais , Apolipoproteínas E/fisiologia , Aterosclerose/enzimologia , Aterosclerose/patologia , Colágeno/metabolismo , Macrófagos/fisiologia , Masculino , Metaloproteinase 1 da Matriz/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA