Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 35(3): 551-556, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28102558

RESUMO

It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556.


Assuntos
Transdiferenciação Celular , Células Ciliadas Auditivas/citologia , Mamíferos/fisiologia , Regeneração/fisiologia , Animais , Humanos
2.
Dev Cell ; 35(5): 553-567, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26651292

RESUMO

The cerebral cortex contains layers of neurons sequentially generated by distinct lineage-related progenitors. At the onset of corticogenesis, the first-born progenitors are apical progenitors (APs), whose asymmetric division gives birth directly to neurons. Later, they switch to indirect neurogenesis by generating intermediate progenitors (IPs), which give rise to projection neurons of all cortical layers. While a direct lineage relationship between APs and IPs has been established, the molecular mechanism that controls their transition remains elusive. Here we show that interfering with codon translation speed triggers ER stress and the unfolded protein response (UPR), further impairing the generation of IPs and leading to microcephaly. Moreover, we demonstrate that a progressive downregulation of UPR in cortical progenitors acts as a physiological signal to amplify IPs and promotes indirect neurogenesis. Thus, our findings reveal a contribution of UPR to cell fate acquisition during mammalian brain development.


Assuntos
Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Resposta a Proteínas não Dobradas , Animais , Linhagem da Célula , Separação Celular , Córtex Cerebral/metabolismo , Códon , Drosophila melanogaster , Células-Tronco Embrionárias/citologia , Deleção de Genes , Genótipo , Histona Acetiltransferases/genética , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fosforilação , Biossíntese de Proteínas , Desnaturação Proteica , Dobramento de Proteína , Transdução de Sinais , Células-Tronco/citologia , Regulação para Cima
3.
Stem Cell Rev Rep ; 11(5): 774-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26059412

RESUMO

Genome engineering and human iPS cells are two powerful technologies, which can be combined to highlight phenotypic differences and identify pathological mechanisms of complex diseases by providing isogenic cellular material. However, very few data are available regarding precise gene correction in human iPS cells. Here, we describe an optimized stepwise protocol to deliver CRISPR/Cas9 plasmids in human iPS cells. We highlight technical issues especially those associated to human stem cell culture and to the correction of a point mutation to obtain isogenic iPS cell line, without inserting any resistance cassette. Based on a two-steps clonal isolation protocol (mechanical picking followed by enzymatic dissociation), we succeed to select and expand corrected human iPS cell line with a great efficiency (more than 2% of the sequenced colonies). This protocol can also be used to obtain knock-out cell line from healthy iPS cell line by the NHEJ pathway (with about 15% efficiency) and reproduce disease phenotype. In addition, we also provide protocols for functional validation tests after every critical step.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Técnicas de Cultura de Células , Reparo do DNA por Junção de Extremidades/genética , Engenharia Genética/métodos , Células HEK293 , Humanos , Mutação Puntual/genética
4.
J Neurosci ; 34(20): 6759-71, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24828631

RESUMO

Structural microtubule-associated proteins (MAPs), like MAP1, not only control the stability of microtubules, but also interact with postsynaptic proteins in the nervous system. Their presynaptic role has barely been studied. To tackle this question, we used the Drosophila model in which there is only one MAP1 homolog: Futsch, which is expressed at the larval neuromuscular junction, presynaptically only. We show that Futsch regulates neurotransmitter release and active zone density. Importantly, we provide evidence that this role of Futsch is not just the consequence of its microtubule-stabilizing function. Using high-resolution microscopy, we show that Futsch and microtubules are almost systematically present in close proximity to active zones, with Futsch being localized in-between microtubules and active zones. Using proximity ligation assays, we further demonstrate the proximity of Futsch, but not microtubules, to active zone components. Altogether our data are in favor of a model by which Futsch locally stabilizes active zones, by reinforcing their link with the underlying microtubule cytoskeleton.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Axonal/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Drosophila , Proteínas de Drosophila/genética , Ácido Glutâmico/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Junção Neuromuscular/genética
5.
J Med Chem ; 55(9): 4407-24, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22533818

RESUMO

The glycogen synthase kinase-3 (GSK-3) has been linked to the pathogenesis of colorectal cancer, diabetes, cardiovascular disease, acute myeloid leukemia (AML), and Alzheimer's disease (AD). The debate on the respective contributions of GSK-3α and GSK-3ß to AD pathology and AML is ongoing. Thus, the identification of potent GSK-3α-selective inhibitors, endowed with favorable pharmacokinetic properties, may elucidate the effect of GSK-3α inhibition in AD and AML models. The analysis of all available crystallized GSK-3 structures provided a simplified scheme of the relevant hot spots responsible for ligand binding and potency. This resulted in the identification of novel scorpion shaped GSK-3 inhibitors. It is noteworthy, compounds 14d and 15b showed the highest GSK-3α selectivity reported so far. In addition, compound 14d did not display significant inhibition of 48 out of 50 kinases in the test panel. The GSK-3 inhibitors were further profiled for efficacy and toxicity in the wild-type (wt) zebrafish embryo assay.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Oxidiazóis/química , Oxidiazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Simulação de Dinâmica Molecular , Oxidiazóis/síntese química , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Peixe-Zebra
6.
Nature ; 467(7319): 1128-32, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20953170

RESUMO

Piwi-associated RNAs (piRNAs), a specific class of 24- to 30-nucleotide-long RNAs produced by the Piwi-type of Argonaute proteins, have a specific germline function in repressing transposable elements. This repression is thought to involve heterochromatin formation and transcriptional and post-transcriptional silencing. The piRNA pathway has other essential functions in germline stem cell maintenance and in maintaining germline DNA integrity. Here we uncover an unexpected function of the piRNA pathway in the decay of maternal messenger RNAs and in translational repression in the early embryo. A subset of maternal mRNAs is degraded in the embryo at the maternal-to-zygotic transition. In Drosophila, maternal mRNA degradation depends on the RNA-binding protein Smaug and the deadenylase CCR4, as well as the zygotic expression of a microRNA cluster. Using mRNA encoding the embryonic posterior morphogen Nanos (Nos) as a paradigm to study maternal mRNA decay, we found that CCR4-mediated deadenylation of nos depends on components of the piRNA pathway including piRNAs complementary to a specific region in the nos 3' untranslated region. Reduced deadenylation when piRNA-induced regulation is impaired correlates with nos mRNA stabilization and translational derepression in the embryo, resulting in head development defects. Aubergine, one of the Argonaute proteins in the piRNA pathway, is present in a complex with Smaug, CCR4, nos mRNA and piRNAs that target the nos 3' untranslated region, in the bulk of the embryo. We propose that piRNAs and their associated proteins act together with Smaug to recruit the CCR4 deadenylation complex to specific mRNAs, thus promoting their decay. Because the piRNAs involved in this regulation are produced from transposable elements, this identifies a direct developmental function for transposable elements in the regulation of gene expression.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Poliadenilação/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Regiões 3' não Traduzidas/genética , Animais , Proteínas Argonautas , Citoplasma/genética , Citoplasma/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Mães , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Zigoto/metabolismo
7.
PLoS One ; 3(4): e2084, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18446215

RESUMO

BACKGROUND: The Dystrophin-glycoprotein complex (DGC) comprises dystrophin, dystroglycan, sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular dystrophies. Most members of the DGC are also concentrated at the neuromuscular junction (NMJ), where their deficiency is often associated with NMJ structural defects. Hence, synaptic dysfunction may also intervene in the pathology of dystrophic muscles. Dystroglycan is a central component of the DGC because it establishes a link between the extracellular matrix and Dystrophin. In this study, we focused on the synaptic role of Dystroglycan (Dg) in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We show that Dg was concentrated postsynaptically at the glutamatergic NMJ, where, like in vertebrates, it controls the concentration of synaptic Laminin and Dystrophin homologues. We also found that synaptic Dg controlled the amount of postsynaptic 4.1 protein Coracle and alpha-Spectrin, as well as the relative subunit composition of glutamate receptors. In addition, both Dystrophin and Coracle were required for normal Dg concentration at the synapse. In electrophysiological recordings, loss of postsynaptic Dg did not affect postsynaptic response, but, surprisingly, led to a decrease in glutamate release from the presynaptic site. CONCLUSION/SIGNIFICANCE: Altogether, our study illustrates a conservation of DGC composition and interactions between Drosophila and vertebrates at the synapse, highlights new proteins associated with this complex and suggests an unsuspected trans-synaptic function of Dg.


Assuntos
Drosophila melanogaster/metabolismo , Distroglicanas/metabolismo , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Distrofina/metabolismo , Espaço Intracelular/metabolismo , Laminina/metabolismo , Proteínas de Membrana/metabolismo , Junção Neuromuscular/citologia , Subunidades Proteicas/metabolismo , Transporte Proteico , Receptores de Glutamato/metabolismo , Espectrina/metabolismo
8.
J Neurosci ; 24(29): 6573-7, 2004 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15269269

RESUMO

A protein-trap screen using the Drosophila neuromuscular junction (NMJ) as a model synapse was performed to identify genes that control synaptic structure or plasticity. We found that Shaggy (Sgg), the Drosophila homolog of the mammalian glycogen synthase kinases 3 alpha and beta, two serine-threonine kinases, was concentrated at this synapse. Using various combinations of mutant alleles of shaggy, we found that Shaggy negatively controlled the NMJ growth. Moreover, tissue-specific expression of a dominant-negative Sgg indicated that this kinase is required in the motoneuron, but not in the muscle, to control NMJ growth. Finally, we show that Sgg controlled the microtubule cytoskeleton dynamics in the motoneuron and that Futsch, a microtubule-associated protein, was required for Shaggy function on synaptic growth.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Quinase 3 da Glicogênio Sintase/fisiologia , Junção Neuromuscular/enzimologia , Junção Neuromuscular/crescimento & desenvolvimento , Animais , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Drosophila melanogaster/ultraestrutura , Quinase 3 da Glicogênio Sintase/análise , Quinase 3 da Glicogênio Sintase/genética , Larva/enzimologia , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Neurônios Motores/enzimologia , Mutação , Fatores de Crescimento Neural/genética , Plasticidade Neuronal , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA