Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 504: 153786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522819

RESUMO

This study evaluated the effect of pharmacological inhibition of galectin 3 (Gal-3) with modified citrus pectin (MCP) on the heart and kidney in a model of cisplatin-induced acute toxicity. Male Wistar rats were divided into four groups (n = 6/group): SHAM, which received sterile saline intraperitoneally (i.p.) for three days; CIS, which received cisplatin i.p. (10 mg/kg/day) for three days; MCP, which received MCP orally (100 mg/kg/day) for seven days, followed by sterile saline i.p. for three days; MCP+CIS, which received MCP orally for seven days followed by cisplatin i.p. for three days. The blood, heart, and kidneys were collected six hours after the last treatment. MCP treatment did not change Gal-3 protein levels in the blood and heart, but it did reduce them in the kidneys of the MCP groups compared to the SHAM group. While no morphological changes were evident in the cardiac tissue, increased malondialdehyde (MDA) levels and deregulation of the mitochondrial oxidative phosphorylation system were observed in the heart homogenates of the MCP+CIS group. Cisplatin administration caused acute tubular degeneration in the kidneys; the MCP+CIS group also showed increased MDA levels. In conclusion, MCP therapy in the acute model of cisplatin-induced toxicity increases oxidative stress in cardiac and renal tissues. Further investigations are needed to determine the beneficial and harmful roles of Gal-3 in the cardiorenal system since it can act differently in acute and chronic diseases/conditions.


Assuntos
Antineoplásicos , Cisplatino , Galectina 3 , Rim , Pectinas , Ratos Wistar , Animais , Cisplatino/toxicidade , Pectinas/farmacologia , Masculino , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Antineoplásicos/toxicidade , Ratos , Cardiotoxicidade , Miocárdio/metabolismo , Miocárdio/patologia , Malondialdeído/metabolismo , Coração/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Galectinas/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/prevenção & controle
2.
Inflammation ; 47(3): 1041-1052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38198110

RESUMO

Annexin A1 (AnxA1) is a glucocorticoid-inducible protein and an important endogenous modulator of inflammation. However, its effect in the endometrial microenvironment is poorly explained. This study aimed to evaluate the role of endogenous AnxA1 in an endometritis mouse model induced by lipopolysaccharide (LPS). Female C57BL/6 wild-type (WT) and AnxA1-/- mice were divided into two groups: SHAM and LPS. To induce endometritis, mice received a vaginal infusion of 50 µL of LPS (1 mg/mL) dissolved in phosphate-buffered saline. After 24 h, the mice were euthanized, and blood and uteri samples were collected. The endometrium inflammatory scores were significantly increased in the LPS-treated group. AnxA1-/- mice from the LPS group demonstrated a significant increase in the number of degranulated mast cell levels compared to AnxA1-/- SHAM mice. The Western blotting analysis revealed that a lack of AnxA1 promoted the upregulation of NLRP3 and pro-IL-1ß in the acute endometritis animal model compared to WT LPS animals. LPS-induced endometritis increased the number of blood peripheral leukocytes in both WT and AnxA1-/- mice compared with SHAM group mice (p < 0.001). AnxA1-/- mice also showed increased plasma levels of IL-1ß (p < 0.01), IL-6, IL-10, IL-17, and TNF-α (p < 0.05) following LPS-induced endometritis. In conclusion, a lack of endogenous AnxA1 exacerbated the inflammatory response in an endometritis model via NLRP3 dysregulation, increased uterine mast cell activation, and plasma pro-inflammatory cytokine release.


Assuntos
Anexina A1 , Endometrite , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Animais , Feminino , Camundongos , Doença Aguda , Anexina A1/metabolismo , Anexina A1/genética , Modelos Animais de Doenças , Endometrite/metabolismo , Endometrite/patologia , Endometrite/induzido quimicamente , Inflamação/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Camundongos Knockout
3.
Life Sci ; 304: 120677, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654117

RESUMO

AIMS: In this study we evaluated the effect of pharmacological treatment with AnxA1-derived peptide Ac2-26 in an experimental model of toxicity induced by cisplatin. MAIN METHODS: Male rats were divided into Sham (control), Cisplatin (received intraperitoneal injections of 10 mg/kg/day of cisplatin for 3 days) and Ac2-26 (received intraperitoneal injections of 1 mg/kg/day of peptide, 15 min before cisplatin) groups. KEY FINDINGS: After 6 h of the last dose of cisplatin, an acute inflammatory response was observed characterized by a marked increase in the number of neutrophils and GM-CSF, IL-ß, IL-6, IL-10 and TNF-α plasma levels. These findings were associated with increased AnxA1 protein levels in liver and kidneys, as well as positive AnxA1/Fpr2 circulating leukocytes. Treatment with Ac2-26 produced higher levels of GM-CSF, corroborating the high numbers of neutrophils, and the anti-inflammatory cytokine IL-4. Ac2-26 preserved the morphology of liver structures and increased Fpr1 expression, preventing the damage caused by cisplatin. In the kidneys, Ac2-26 caused downregulation of renal Fpr1 and Fpr2 levels and abrogated the increased levels of the CLU and KIM-1 biomarkers of kidney damage induced by cisplatin. However, no effect of peptide treatment was detected in cisplatin-induced kidney morphology injury. SIGNIFICANCE: Despite activation of the anti-inflammatory AnxA1/Fpr axis during cisplatin administration, treatment with Ac2-26 did not efficiently prevent its deleterious effects on the liver and kidneys.


Assuntos
Anexina A1 , Animais , Anexina A1/química , Anexina A1/metabolismo , Anexina A1/farmacologia , Anti-Inflamatórios/farmacologia , Cisplatino/metabolismo , Cisplatino/toxicidade , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Peptídeos/química , Ratos
4.
Toxicol Lett ; 363: 27-35, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561849

RESUMO

Cisplatin is an antineoplastic agent widely used, and no effective treatments capable of preventing cisplatin-induced ototoxicity and neurotoxicity in humans have yet been identified. This study evaluated the effect of the anti-inflammatory annexin A1 (AnxA1)-derived peptide Ac2-26 in a cisplatin-induced ototoxicity model. Wistar rats received intraperitoneal injections of cisplatin (10 mg/kg/day) for 3 days to induce hearing loss, and Ac2-26 (1 mg/kg) was administered 15 min before cisplatin administration. Control animals received an equal volume of saline. Hearing thresholds were measured by distortion product otoacoustic emissions (DPOAE) before and after treatments. Pharmacological treatment with Ac2-26 protected against cisplatin-induced hearing loss, as evidenced by DPOAE results showing similar signal-noise ratios between the control and Ac2-26-treated groups. These otoprotective effects of Ac2-26 were associated with an increased number of ganglion neurons compared with the untreated cisplatin group. Additionally, Ac2-26 treatment produced reduced immunoreactivity on cleaved caspase 3 and phosphorylated ERK levels in the ganglion neurons, compared to the untreated group, supporting the neuroprotective effects of the Ac2-26. Our results suggest that Ac2-26 has a substantial otoprotective effect in this cisplatin-induced ototoxicity model mediated by neuroprotection and the regulation of the ERK pathway.


Assuntos
Anexina A1 , Antineoplásicos , Perda Auditiva , Ototoxicidade , Animais , Anexina A1/farmacologia , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Emissões Otoacústicas Espontâneas , Ototoxicidade/prevenção & controle , Peptídeos/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA