Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3384, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649760

RESUMO

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.


Assuntos
Predisposição Genética para Doença , Leucopenia , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Humanos , Contagem de Leucócitos , Masculino , Feminino , Leucopenia/genética , Leucopenia/sangue , Pessoa de Meia-Idade , Idoso , Adulto , Imunossupressores/uso terapêutico
2.
Ann Surg ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482687

RESUMO

OBJECTIVE: To examine the association of prescription opioid fills over the year prior to surgery with postoperative outcomes. BACKGROUND: Nearly one third of patients report opioid use in the year preceding surgery, yet an understanding of how opioid exposure influences patient-reported outcomes after surgery remains incomplete. Therefore, this study was designed to test the hypothesis that preoperative opioid exposure may impede recovery in the postoperative period. METHODS: This retrospective cohort study used a statewide clinical registry from 70 hospitals linked to opioid fulfillment data from the state's prescription drug monitoring program to categorize patients' preoperative opioid exposure as none (naïve), minimal, intermittent, or chronic. Outcomes were patient-reported pain intensity (primary), as well as 30-day clinical and patient-reported outcomes (secondary). RESULTS: Compared to opioid-naïve patients, opioid exposure was associated with higher reported pain scores at 30 days after surgery. Predicted probabilities was higher among the opioid exposed versus naive group for reporting moderate pain (43.5% [95% CI 42.6 - 44.4%] vs 39.3% [95% CI 38.5 - 40.1%]) and severe pain (13.% [95% CI 12.5 - 14.0%] vs 10.0% [95% CI 9.5 - 10.5%]), and increasing probability was associated increased opioid exposure for both outcomes. Clinical outcomes (incidence of ED visits, readmissions, and reoperation within 30-days) and patient-reported outcomes (reported satisfaction, regret, and quality of life) were also worse with increasing preoperative opioid exposure for most outcomes. CONCLUSIONS: This study is the first to examine the effect of presurgical opioid exposure on both clinical and non-clinical outcomes in a broad cohort of patients, and shows that exposure is associated with worse postsurgical outcomes. A key question to be addressed is whether and to what extent opioid tapering before surgery mitigates these risks after surgery.

3.
Anesthesiology ; 139(6): 827-839, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774411

RESUMO

BACKGROUND: Postsurgical pain is a key component of surgical recovery. However, the genetic drivers of postsurgical pain remain unclear. A broad review and meta-analyses of variants of interest will help investigators understand the potential effects of genetic variation. METHODS: This article is a systematic review of genetic variants associated with postsurgical pain in humans, assessing association with postsurgical pain scores and opioid use in both acute (0 to 48 h postoperatively) and chronic (at least 3 months postoperatively) settings. PubMed, Embase, and the Cochrane Central Register of Controlled Trials were searched from 2000 to 2022 for studies using search terms related to genetic variants and postsurgical pain in humans. English-language studies in adult patients examining associations of one or more genetic variants with postsurgical pain were included. The primary outcome was association of genetic variants with either acute or chronic postsurgical pain. Pain was measured by patient-reported pain score or analgesic or opioid consumption. RESULTS: A total of 163 studies were included, evaluating 129 unique genes and 594 unique genetic variants. Many of the reported significant associations fail to be replicated in other studies. Meta-analyses were performed for seven variants for which there was sufficient data (OPRM1 rs1799971; COMT rs4680, rs4818, rs4633, and rs6269; and ABCB1 rs1045642 and rs2032582). Only two variants were associated with small differences in postsurgical pain: OPRM1 rs1799971 (for acute postsurgical opioid use standard mean difference = 0.25; 95% CI, 0.16 to 0.35; cohort size, 8,227; acute postsurgical pain score standard mean difference = 0.20; 95% CI, 0.09 to 0.31; cohort size, 4,619) and COMT rs4680 (chronic postsurgical pain score standard mean difference = 0.26; 95% CI, 0.08 to 0.44; cohort size, 1,726). CONCLUSIONS: Despite much published data, only two alleles have a small association with postsurgical pain. Small sample sizes, potential confounding variables, and inconsistent findings underscore the need to examine larger cohorts with consistent outcome measures.


Assuntos
Analgésicos Opioides , Polimorfismo de Nucleotídeo Único , Adulto , Humanos , Dor Pós-Operatória/genética , Analgésicos
4.
medRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662324

RESUMO

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is undefined. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio=0.55 per standard deviation increase in PGSWBC [95%CI, 0.30 - 0.94], p=0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n=1,724, hazard ratio [HR]=0.78 [0.69 - 0.88], p=4.0×10-5) or immunosuppressant (n=354, HR=0.61 [0.38 - 0.99], p=0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n=1,466, HR=0.62 [0.44 - 0.87], p=0.006). Collectively, these findings suggest that a WBC count polygenic score identifies individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.

5.
J Clin Invest ; 128(11): 4843-4855, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153110

RESUMO

Cardiac two-pore domain potassium channels (K2P) exist in organisms from Drosophila to humans; however, their role in cardiac function is not known. We identified a K2P gene, CG8713 (sandman), in a Drosophila genetic screen and show that sandman is critical to cardiac function. Mice lacking an ortholog of sandman, TWIK-related potassium channel (TREK-1, also known Kcnk2), exhibit exaggerated pressure overload-induced concentric hypertrophy and alterations in fetal gene expression, yet retain preserved systolic and diastolic cardiac function. While cardiomyocyte-specific deletion of TREK-1 in response to in vivo pressure overload resulted in cardiac dysfunction, TREK-1 deletion in fibroblasts prevented deterioration in cardiac function. The absence of pressure overload-induced dysfunction in TREK-1-KO mice was associated with diminished cardiac fibrosis and reduced activation of JNK in cardiomyocytes and fibroblasts. These findings indicate a central role for cardiac fibroblast TREK-1 in the pathogenesis of pressure overload-induced cardiac dysfunction and serve as a conceptual basis for its inhibition as a potential therapy.


Assuntos
Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Drosophila melanogaster , Fibroblastos/patologia , Fibrose , Humanos , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/patologia , Canais de Potássio de Domínios Poros em Tandem/genética , Domínios Proteicos
6.
Am J Hum Genet ; 99(2): 318-36, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27486776

RESUMO

Bardet-Biedl syndrome (BBS) is a defining ciliopathy, notable for extensive allelic and genetic heterogeneity, almost all of which has been identified through sequencing. Recent data have suggested that copy-number variants (CNVs) also contribute to BBS. We used a custom oligonucleotide array comparative genomic hybridization (aCGH) covering 20 genes that encode intraflagellar transport (IFT) components and 74 ciliopathy loci to screen 92 unrelated individuals with BBS, irrespective of their known mutational burden. We identified 17 individuals with exon-disruptive CNVs (18.5%), including 13 different deletions in eight BBS genes (BBS1, BBS2, ARL6/BBS3, BBS4, BBS5, BBS7, BBS9, and NPHP1) and a deletion and a duplication in other ciliopathy-associated genes (ALMS1 and NPHP4, respectively). By contrast, we found a single heterozygous exon-disruptive event in a BBS-associated gene (BBS9) in 229 control subjects. Superimposing these data with resequencing revealed CNVs to (1) be sufficient to cause disease, (2) Mendelize heterozygous deleterious alleles, and (3) contribute oligogenic alleles by combining point mutations and exonic CNVs in multiple genes. Finally, we report a deletion and a splice site mutation in IFT74, inherited under a recessive paradigm, defining a candidate BBS locus. Our data suggest that CNVs contribute pathogenic alleles to a substantial fraction of BBS-affected individuals and highlight how either deletions or point mutations in discrete splice isoforms can induce hypomorphic mutations in genes otherwise intolerant to deleterious variation. Our data also suggest that CNV analyses and resequencing studies unbiased for previous mutational burden is necessary to delineate the complexity of disease architecture.


Assuntos
Síndrome de Bardet-Biedl/genética , Variações do Número de Cópias de DNA/genética , Mutação , Adolescente , Adulto , Alelos , Animais , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Éxons/genética , Feminino , Gastrulação/genética , Genes Recessivos , Humanos , Lactente , Masculino , Linhagem , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Nature ; 524(7564): 225-9, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26123021

RESUMO

Patterns of amino acid conservation have served as a tool for understanding protein evolution. The same principles have also found broad application in human genomics, driven by the need to interpret the pathogenic potential of variants in patients. Here we performed a systematic comparative genomics analysis of human disease-causing missense variants. We found that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for genomic context. We developed a model of genetic interactions that predicts most of these to be simple pairwise compensations. Functional testing of this model on two known human disease genes revealed discrete cis amino acid residues that, although benign on their own, could rescue the human mutations in vivo. This approach was also applied to ab initio gene discovery to support the identification of a de novo disease driver in BTG2 that is subject to protective cis-modification in more than 50 species. Finally, on the basis of our data and models, we developed a computational tool to predict candidate residues subject to compensation. Taken together, our data highlight the importance of cis-genomic context as a contributor to protein evolution; they provide an insight into the complexity of allele effect on phenotype; and they are likely to assist methods for predicting allele pathogenicity.


Assuntos
Doença/genética , Genômica , Mutação de Sentido Incorreto/genética , Supressão Genética/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Evolução Molecular , Genoma Humano/genética , Humanos , Proteínas Imediatamente Precoces/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos , Fenótipo , Proteínas/genética , Alinhamento de Sequência , Proteínas Supressoras de Tumor/genética
8.
Biochim Biophys Acta ; 1842(10): 1960-1970, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24887202

RESUMO

Rapid advances and cost erosion in exome and genome analysis of patients with both rare and common genetic disorders have accelerated gene discovery and illuminated fundamental biological mechanisms. The thrill of discovery has been accompanied, however, with the sobering appreciation that human genomes are burdened with a large number of rare and ultra rare variants, thereby posing a significant challenge in dissecting both the effect of such alleles on protein function and also the biological relevance of these events to patient pathology. In an effort to develop model systems that are able to generate surrogates of human pathologies, a powerful suite of tools have been developed in zebrafish, taking advantage of the relatively small (compared to invertebrate models) evolutionary distance of that genome to humans, the orthology of several organs and signaling processes, and the suitability of this organism for medium and high throughput phenotypic screening. Here we will review the use of this model organism in dissecting human genetic disorders; we will highlight how diverse strategies have informed disease causality and genetic architecture; and we will discuss relative strengths and limitations of these approaches in the context of medical genome sequencing. This article is part of a Special Issue entitled: From Genome to Function.

9.
Genetics ; 189(3): 861-70, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21890737

RESUMO

The Minute syndrome in Drosophila melanogaster is characterized by delayed development, poor fertility, and short slender bristles. Many Minute loci correspond to disruptions of genes for cytoplasmic ribosomal proteins, and therefore the phenotype has been attributed to alterations in translational processes. Although protein translation is crucial for all cells in an organism, it is unclear why Minute mutations cause effects in specific tissues. To determine whether the heart is sensitive to haplo-insufficiency of genes encoding ribosomal proteins, we measured heart function of Minute mutants using optical coherence tomography. We found that cardiomyopathy is associated with the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. While mutations of genes encoding non-Minute cytoplasmic ribosomal proteins are homozygous lethal, heterozygous deficiencies spanning these non-Minute genes did not cause a change in cardiac function. Deficiencies of genes for non-Minute mitochondrial ribosomal proteins also did not show abnormal cardiac function, with the exception of a heterozygous disruption of mRpS33. We demonstrate that cardiomyopathy is a common trait of the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. In contrast, most cases of heterozygous deficiencies of genes encoding non-Minute ribosomal proteins have normal heart function in adult Drosophila.


Assuntos
Cardiomiopatias/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Haploinsuficiência/genética , Proteínas Ribossômicas/genética , Animais , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Proteínas de Drosophila/deficiência , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Proteínas Ribossômicas/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA