RESUMO
Background Indication for prophylactic surgical abdominal aortic aneurysm (AAA) repair depends on the maximal aortic diameter. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for uptake of oxidized low-density lipoprotein cholesterol and is implicated in atherosclerosis. A soluble form of LOX-1 (sLOX-1) has been discussed as a novel biomarker in coronary artery disease and stroke. Herein, we assessed the regulation of aortic LOX-1 as well as the diagnostic and risk stratification potential of sLOX-1 in patients with AAA. Methods and Results Serum sLOX-1 was assessed in a case-control study in AAA (n=104) and peripheral artery disease (n=104). sLOX-1 was not statistically different between AAA and peripheral artery disease but was higher in AAA (ß=1.28, P=0.04) after adjusting for age, atherosclerosis, type 2 diabetes, prescription of statins, ß-blockers, ACE inhibitors, and therapeutic anticoagulation. sLOX-1 was not associated with the aortic diameter, AAA volume, or the thickness of the intraluminal thrombus. Aortic LOX-1 mRNA expression tended to be higher in AAA when compared with disease, and expression was positively associated with cleaved caspase-3, smooth muscle actin, collagen, and macrophage content. Conclusions In AAA, sLOX-1 was differently affected by age, cardiometabolic diseases, and corresponding medical therapies. Comparison with nonatherosclerotic disease would be beneficial to further elucidate the diagnostic potential of sLOX-1, although it was not useful for risk stratification. Aneurysmal LOX-1 mRNA expression was increased and positively associated with smooth muscle cells and collagen content, suggesting that LOX-1 is eventually not deleterious in human AAA and could counteract AAA rupture.
Assuntos
Aneurisma da Aorta Abdominal , Aterosclerose , Diabetes Mellitus Tipo 2 , Doença Arterial Periférica , Humanos , Aneurisma da Aorta Abdominal/genética , Biomarcadores , Estudos de Casos e Controles , RNA Mensageiro , Receptores Depuradores Classe ERESUMO
Red blood cells are found within the abdominal aortic aneurysm (AAA), in the intraluminal thrombus (ILT), and in neovessels. Hemolysis promotes aortic degeneration, e.g., by heme-induced reactive oxygen species formation. To reduce its toxicity, hemoglobin is endocytosed by the CD163 receptor and heme is degraded by heme oxygenase-1 (HO-1). A soluble form (sCD163) is discussed as an inflammatory biomarker representing the activation of monocytes and macrophages. HO-1 and NAD(P)H quinone dehydrogenase 1 (NQO1) are antioxidant genes that are induced by the Nrf2 transcription factor, but their regulation in AAA is only poorly understood. The aim of the present study was to analyze linkages between CD163, Nrf2, HO-1, and NQO1 and to clarify if plasma sCD163 has diagnostic and risk stratification potential. Soluble CD163 was 1.3-fold (p = 0.015) higher in AAA compared to patients without arterial disease. The difference remained significant after adjusting for age and sex. sCD163 correlated with the thickness of the ILT (rs = 0.26; p = 0.02) but not with the AAA diameter or volume. A high aneurysmal CD163 mRNA was connected to increases in NQO1, HMOX1, and Nrf2 mRNA. Further studies are needed to analyze the modulation of the CD163/HO-1/NQO1 pathway with the overall goal of minimizing the detrimental effects of hemolysis.
RESUMO
Carotid artery stenosis (CAS) develops from atherosclerotic lesions and plaques. Plaque rupture or stenosis may result in occlusion of the carotid artery. Accordingly, the asymptomatic disease becomes symptomatic, characterized by ischemic stroke or transient ischemic attacks, indicating an urgent need for better understanding of the underlying molecular mechanisms and eventually prevent symptomatic CAS. NOX4, a member of the NADPH oxidase family, has anti-atherosclerotic and anti-inflammatory properties in animal models of early atherosclerosis. We hypothesized that NOX4 mRNA expression is linked to protective mechanisms in CAS patients with advanced atherosclerotic lesions as well. Indeed, NOX4 mRNA expression is lower in patients with symptomatic CAS. A low NOX4 mRNA expression is associated with an increased risk of the development of clinical symptoms. In fact, NOX4 appears to be linked to plaque stability, apoptosis and plaque hemorrhage. This is supported by cleaved caspase-3 and glycophorin C and correlates inversely with plaque NOX4 mRNA expression. Even healing of a ruptured plaque appears to be connected to NOX4, as NOX4 mRNA expression correlates to fibrous cap collagen and is reciprocally related to MMP9 activity. In conclusion, low intra-plaque NOX4 mRNA expression is associated with an increased risk for symptomatic outcome and with reduced plaque stabilizing mechanisms suggesting protective effects of NOX4 in human advanced atherosclerosis.
RESUMO
BACKGROUND: Treatment of cardiovascular risk factors slows the progression of small abdominal aortic aneurysms (AAA). Heme oxygenase-1 (HO-1) is a stress- and hemin-induced enzyme providing cytoprotection against oxidative stress when overexpressed. However, nothing is known about the effects of cardiometabolic standard therapies on HO-1 expression in aortic walls in patients with end-stage AAA. METHODS: The effects of statins, angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), calcium channel blockers (CCBs), beta-blockers, diuretics, acetylsalicylic acid (ASA), and therapeutic anticoagulation on HO-1 mRNA and protein expressions were analyzed in AAA patients using multivariate logistic regression analysis and comparison of monotherapy. RESULTS: Analysis of monotherapy revealed that HO-1 mRNA and protein expressions were higher in patients on diuretics and lower in patients on statin therapy. Tests on combinations of antihypertensive medications demonstrated that ACE inhibitors and diuretics, ARBs and diuretics, and beta-blockers and diuretics were associated with increase in HO-1 mRNA expression. ASA and therapeutic anticoagulation were not linked to HO-1 expression. CONCLUSION: Diuretics showed the strongest association with HO-1 expression, persisting even in combination with other antihypertensive medications. Hence, changes in aortic HO-1 expression in response to different medical therapies and their effects on vessel wall degeneration should be analyzed in future studies.