Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 880: 163260, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028665

RESUMO

Insect outbreaks affect forest structure and function and represent a major category of forest disturbance globally. However, the resulting impacts on evapotranspiration (ET), and especially hydrological partitioning between the abiotic (evaporation) and biotic (transpiration) components of total ET, are not well constrained. As a result, we combined remote sensing, eddy covariance, and hydrological modeling approaches to determine the effects of bark beetle outbreak on ET and its partitioning at multiple scales throughout the Southern Rocky Mountain Ecoregion (SRME), USA. At the eddy covariance measurement scale, 85 % of the forest was affected by beetles, and water year ET as a fraction of precipitation (P) decreased by 30 % relative to a control site, with 31 % greater reductions in growing season transpiration relative to total ET. At the ecoregion scale, satellite remote sensing masked to areas of >80 % tree mortality showed corresponding ET/P reductions of 9-15 % that occurred 6-8 years post-disturbance, and indicated that the majority of the total reduction occurred during the growing season; the Variable Infiltration Capacity hydrological model showed an associated 9-18 % increase in the ecoregion runoff ratio. Long-term (16-18 year) ET and vegetation mortality datasets extend the length of previously published analyses and allowed for clear characterization of the forest recovery period. During that time, transpiration recovery outpaced total ET recovery, which was lagged in part due to persistently reduced winter sublimation, and there was associated evidence of increasing late summer vegetation moisture stress. Overall, comparison of three independent methods and two partitioning approaches demonstrated a net negative impact of bark beetles on ET, and a relatively greater negative impact on transpiration, following bark beetle outbreak in the SRME.


Assuntos
Besouros , Gorgulhos , Animais , Casca de Planta , Florestas , Árvores
2.
Glob Chang Biol ; 21(2): 708-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25205425

RESUMO

Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 µmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 µmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 µmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 µmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.


Assuntos
Movimentos do Ar , Conservação dos Recursos Naturais/métodos , Florestas , Árvores/fisiologia , Gorgulhos/fisiologia , Animais , Ritmo Circadiano , Estações do Ano , Wyoming
3.
Artigo em Inglês | MEDLINE | ID: mdl-20175009

RESUMO

This study set out to assess the relative importance of sound and unsound beans in a batch of coffee with regard to ochratoxin A (OTA) contamination. Initially, unsound beans were found to account for 95% of contamination in a batch of coffee, whatever the methods used for post-harvest processing. It was also found that beans displaying traces of attacks by Colletotrichum kahawae were the greatest contributors to OTA contamination. In a second stage, the study compared the contamination of sound beans with that of beans attacked by Colletotrichum kahawae. On average, beans attacked by Colletotrichum kahawae had a statistically higher OTA content than sound beans (18.0 microg kg(-1) as opposed to 1.2 microg kg(-1)). In addition, the average OTA content in unsound beans varied depending on growing conditions.


Assuntos
Café/química , Café/crescimento & desenvolvimento , Café/microbiologia , Colletotrichum/patogenicidade , Contaminação de Alimentos/análise , Ocratoxinas/análise , Fabaceae/microbiologia , Manipulação de Alimentos/métodos , Quênia , Prunus/crescimento & desenvolvimento , Prunus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA