Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 14(1): 2244235, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37598369

RESUMO

Antibody-drug conjugates (ADCs) can improve therapeutic indices compared to plain monoclonal antibodies (mAbs). However, ADC synthesis is complex because the components are produced separately in CHO cells (mAb) and often by chemical synthesis (drug). They are individually purified, coupled, and then the ADC is purified, increasing production costs compared to regular mAbs. In contrast, it is easier to produce recombinant fusion proteins consisting of an antibody derivative, linker and proteinaceous toxin, i.e. a recombinant immunotoxin (RIT). Plants are capable of the post-translational modifications needed for functional antibodies and can also express active protein toxins such as the recombinant mistletoe lectin viscumin, which is not possible in prokaryotes and mammalian cells respectively. Here, we used Nicotiana benthamiana and N. tabacum plants as well as tobacco BY-2 cell-based plant cell packs (PCPs) to produce effective RITs targeting CD64 as required for the treatment of myelomonocytic leukemia. We compared RITs with different subcellular targeting signals, linkers, and proteinaceous toxins. The accumulation of selected candidates was improved to ~ 40 mg kg-1 wet biomass using a design of experiments approach, and corresponding proteins were isolated with a purity of ~ 80% using an optimized affinity chromatography method with an overall yield of ~ 84%. One anti-CD64 targeted viscumin-based drug candidate was characterized in terms of storage stability and cytotoxicity test in vitro using human myelomonocytic leukemia cell lines. We identified bottlenecks in the plant-based expression platform that require further improvement and assessed critical process parameters that should be considered during process development for plant-made RITs.


Toxin type and domain sequence affect accumulation of recombinant immunotoxins.Transient expression in plant cell packs and intact plants correlates well.IC50 values of toxicity correlate with the cell surface receptor concentration.


Assuntos
Imunotoxinas , Leucemia , Animais , Humanos , Cricetinae , Imunotoxinas/genética , Imunotoxinas/farmacologia , Cricetulus , Células Vegetais , Nicotiana/genética , Anticorpos Monoclonais/genética , Células CHO
2.
J Pers Med ; 12(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35629124

RESUMO

Background: Deep inferior epigastric perforator and muscle sparing transverse rectus abdominis muscle flaps are commonly used flaps for autologous breast reconstruction. CT-angiography allows to analyse the perforator course preoperatively. Our aim was to compare the different aspects of perforator anatomy in the most detailed study. Methods: CT-angiographies of 300 female patients with autologous breast reconstruction of 10 years were analysed regarding the anatomy of the deep inferior epigastric artery and every perforator. Results: Overall, 2260 perforators were included. We identified correlations regarding the DIEA branching point and number of perforators and their intramuscular course. The largest perforator emerged more often from the medial branch of the DIEA than the smaller perforators (70% (416/595) vs. 54% (878/1634), p < 0.001) and more often had a direct connection to the SIEV (large 67% (401/595) vs. small 39% (634/1634), p < 0.01). Medial row perforators were larger than the laterals (lateral 1.44 mm ± 0.43 (n = 941) vs. medial 1.58 mm ± 0.52 (n = 1304) (p < 0.001)). The larger and more medial the perforator, the more likely it was connected to the SIEV: perforators with direct connection to the SIEV had a diameter of 1.65 mm ± 0.53 (n = 1050), perforators with indirect connection had a diameter of 1.43 ± 0.43 (n = 1028), perforators without connection had a diameter of 1.31 mm ± 0.37 (n = 169) (p < 0.001). Medial perforators were more often directly connected to the SIEV than lateral perforators (medial 56% (723/1302) vs. lateral 35% (327/941), p < 0.001). A lateral perforator more often had a short intramuscular course than medial perforators (69% (554/800) vs. 45% (474/1055), p < 0.001), which was also more often observed in the case of a small perforator and a caudal exit of the rectus sheath. Conclusion: The largest perforator emerges more often from the medial branch of the DIEA and frequently has a direct connection to the SIEV, making medial row perforators ideal for DIEP flap transplantation.

3.
Eur J Neurosci ; 44(12): 2991-3000, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27740716

RESUMO

A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.


Assuntos
Axônios/enzimologia , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Gânglios Espinais/embriologia , Gânglios Espinais/enzimologia , Peptídeo Natriurético Tipo C/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Natriurético Tipo C/administração & dosagem , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA