Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766135

RESUMO

Humans can remember specific events without acting on them and can influence which memories are retrieved based on internal goals. However, current animal models of memory typically present sensory cues to trigger retrieval and assess retrieval based on action 1-5 . As a result, it is difficult to determine whether measured patterns of neural activity relate to the cue(s), the retrieved memory, or the behavior. We therefore asked whether we could develop a paradigm to isolate retrieval-related neural activity in animals without retrieval cues or the requirement of a behavioral report. To do this, we focused on hippocampal "place cells." These cells primarily emit spiking patterns that represent the animal's current location (local representations), but they can also generate representations of previously visited locations distant from the animal's current location (remote representations) 6-13 . It is not known whether animals can deliberately engage specific remote representations, and if so, whether this engagement would occur during specific brain states. So, we used a closed-loop neurofeedback system to reward expression of remote representations that corresponded to uncued, experimenter-selected locations, and found that rats could increase the prevalence of these specific remote representations over time; thus, demonstrating memory retrieval modulated by internal goals in an animal model. These representations occurred predominately during periods of immobility but outside of hippocampal sharp-wave ripple (SWR) 13-15 events. This paradigm enables future direct studies of memory retrieval mechanisms in the healthy brain and in models of neurological disorders.

2.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38328074

RESUMO

Scientific progress depends on reliable and reproducible results. Progress can also be accelerated when data are shared and re-analyzed to address new questions. Current approaches to storing and analyzing neural data typically involve bespoke formats and software that make replication, as well as the subsequent reuse of data, difficult if not impossible. To address these challenges, we created Spyglass, an open-source software framework that enables reproducible analyses and sharing of data and both intermediate and final results within and across labs. Spyglass uses the Neurodata Without Borders (NWB) standard and includes pipelines for several core analyses in neuroscience, including spectral filtering, spike sorting, pose tracking, and neural decoding. It can be easily extended to apply both existing and newly developed pipelines to datasets from multiple sources. We demonstrate these features in the context of a cross-laboratory replication by applying advanced state space decoding algorithms to publicly available data. New users can try out Spyglass on a Jupyter Hub hosted by HHMI and 2i2c: https://spyglass.hhmi.2i2c.cloud/.

3.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328245

RESUMO

The brain has the remarkable ability to learn and guide the performance of complex tasks. Decades of lesion studies suggest that different brain regions perform specialized functions in support of complex behaviors1-3. Yet recent large-scale studies of neural activity reveal similar patterns of activity and encoding distributed widely throughout the brain4-6. How these distributed patterns of activity and encoding are compatible with regional specialization of brain function remains unclear. Two frontal brain regions, the dorsal medial prefrontal cortex (dmPFC) and orbitofrontal cortex (OFC), are a paradigm of this conundrum. In the setting complex behaviors, the dmPFC is necessary for choosing optimal actions2,7,8, whereas the OFC is necessary for waiting for3,9 and learning from2,7,9-12 the outcomes of those actions. Yet both dmPFC and OFC encode both choice- and outcome-related quantities13-20. Here we show that while ensembles of neurons in the dmPFC and OFC of rats encode similar elements of a cognitive task with similar patterns of activity, the two regions differ in when that coding is consistent across trials ("reliable"). In line with the known critical functions of each region, dmPFC activity is more reliable when animals are making choices and less reliable preceding outcomes, whereas OFC activity shows the opposite pattern. Our findings identify the dynamic reliability of neural population codes as a mechanism whereby different brain regions may support distinct cognitive functions despite exhibiting similar patterns of activity and encoding similar quantities.

4.
Neuron ; 111(21): 3465-3478.e7, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611585

RESUMO

Animals frequently make decisions based on expectations of future reward ("values"). Values are updated by ongoing experience: places and choices that result in reward are assigned greater value. Yet, the specific algorithms used by the brain for such credit assignment remain unclear. We monitored accumbens dopamine as rats foraged for rewards in a complex, changing environment. We observed brief dopamine pulses both at reward receipt (scaling with prediction error) and at novel path opportunities. Dopamine also ramped up as rats ran toward reward ports, in proportion to the value at each location. By examining the evolution of these dopamine place-value signals, we found evidence for two distinct update processes: progressive propagation of value along taken paths, as in temporal difference learning, and inference of value throughout the maze, using internal models. Our results demonstrate that within rich, naturalistic environments dopamine conveys place values that are updated via multiple, complementary learning algorithms.


Assuntos
Tomada de Decisões , Dopamina , Ratos , Animais , Recompensa , Encéfalo
5.
Nature ; 617(7959): 125-131, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046088

RESUMO

The hippocampus is a mammalian brain structure that expresses spatial representations1 and is crucial for navigation2,3. Navigation, in turn, intricately depends on locomotion; however, current accounts suggest a dissociation between hippocampal spatial representations and the details of locomotor processes. Specifically, the hippocampus is thought to represent mainly higher-order cognitive and locomotor variables such as position, speed and direction of movement4-7, whereas the limb movements that propel the animal can be computed and represented primarily in subcortical circuits, including the spinal cord, brainstem and cerebellum8-11. Whether hippocampal representations are actually decoupled from the detailed structure of locomotor processes remains unknown. To address this question, here we simultaneously monitored hippocampal spatial representations and ongoing limb movements underlying locomotion at fast timescales. We found that the forelimb stepping cycle in freely behaving rats is rhythmic and peaks at around 8 Hz during movement, matching the approximately 8 Hz modulation of hippocampal activity and spatial representations during locomotion12. We also discovered precisely timed coordination between the time at which the forelimbs touch the ground ('plant' times of the stepping cycle) and the hippocampal representation of space. Notably, plant times coincide with hippocampal representations that are closest to the actual position of the nose of the rat, whereas between these plant times, the hippocampal representation progresses towards possible future locations. This synchronization was specifically detectable when rats approached spatial decisions. Together, our results reveal a profound and dynamic coordination on a timescale of tens of milliseconds between central cognitive representations and peripheral motor processes. This coordination engages and disengages rapidly in association with cognitive demands and is well suited to support rapid information exchange between cognitive and sensory-motor circuits.


Assuntos
Hipocampo , Locomoção , Navegação Espacial , Animais , Ratos , Membro Anterior/fisiologia , Hipocampo/fisiologia , Locomoção/fisiologia , Navegação Espacial/fisiologia , Tomada de Decisões , Fatores de Tempo , Cognição/fisiologia , Vias Eferentes
6.
bioRxiv ; 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36993482

RESUMO

Dopamine in the nucleus accumbens helps motivate behavior based on expectations of future reward ("values"). These values need to be updated by experience: after receiving reward, the choices that led to reward should be assigned greater value. There are multiple theoretical proposals for how this credit assignment could be achieved, but the specific algorithms that generate updated dopamine signals remain uncertain. We monitored accumbens dopamine as freely behaving rats foraged for rewards in a complex, changing environment. We observed brief pulses of dopamine both when rats received reward (scaling with prediction error), and when they encountered novel path opportunities. Furthermore, dopamine ramped up as rats ran towards reward ports, in proportion to the value at each location. By examining the evolution of these dopamine place-value signals, we found evidence for two distinct update processes: progressive propagation along taken paths, as in temporal-difference learning, and inference of value throughout the maze, using internal models. Our results demonstrate that within rich, naturalistic environments dopamine conveys place values that are updated via multiple, complementary learning algorithms.

7.
Nat Commun ; 13(1): 6000, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224194

RESUMO

Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.


Assuntos
Hipocampo , Memória , Potenciais de Ação , Humanos
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1866): 20210336, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36314152

RESUMO

Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.


Assuntos
Hipocampo , Memória Episódica , Humanos , Hipocampo/fisiologia , Imaginação/fisiologia , Neurônios/fisiologia , Rememoração Mental
9.
Cell Rep ; 39(3): 110708, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443181

RESUMO

Understanding the complexities of behavior is necessary to interpret neurophysiological data and establish animal models of neuropsychiatric disease. This understanding requires knowledge of the underlying information-processing structure-something often hidden from direct observation. Commonly, one assumes that behavior is solely governed by the experimenter-controlled rules that determine tasks. For example, differences in tasks that require memory of past actions are often interpreted as exclusively resulting from differences in memory. However, such assumptions are seldom tested. Here, we provide a comprehensive examination of multiple processes that contribute to behavior in a prevalent experimental paradigm. Using a combination of behavioral automation, hypothesis-driven trial design, and reinforcement learning modeling, we show that rats learn a spatial alternation task consistent with their drawing upon spatial preferences in addition to memory. Our approach also distinguishes learning based on established preferences from generalization of task structure, providing further insights into learning dynamics.


Assuntos
Aprendizagem , Reforço Psicológico , Animais , Cognição , Aprendizagem/fisiologia , Aprendizagem em Labirinto/fisiologia , Ratos
10.
J Neurosci ; 42(18): 3797-3810, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35351831

RESUMO

Humans have the ability to store and retrieve memories with various degrees of specificity, and recent advances in reinforcement learning have identified benefits to learning when past experience is represented at different levels of temporal abstraction. How this flexibility might be implemented in the brain remains unclear. We analyzed the temporal organization of male rat hippocampal population spiking to identify potential substrates for temporally flexible representations. We examined activity both during locomotion and during memory-associated population events known as sharp-wave ripples (SWRs). We found that spiking during SWRs is rhythmically organized with higher event-to-event variability than spiking during locomotion-associated population events. Decoding analyses using clusterless methods further indicate that a similar spatial experience can be replayed in multiple SWRs, each time with a different rhythmic structure whose periodicity is sampled from a log-normal distribution. This variability increases with experience despite the decline in SWR rates that occurs as environments become more familiar. We hypothesize that the variability in temporal organization of hippocampal spiking provides a mechanism for storing experiences with various degrees of specificity.SIGNIFICANCE STATEMENT One of the most remarkable properties of memory is its flexibility: the brain can retrieve stored representations at varying levels of detail where, for example, we can begin with a memory of an entire extended event and then zoom in on a particular episode. The neural mechanisms that support this flexibility are not understood. Here we show that hippocampal sharp-wave ripples, which mark the times of memory replay and are important for memory storage, have a highly variable temporal structure that is well suited to support the storage of memories at different levels of detail.


Assuntos
Hipocampo , Aprendizagem , Animais , Masculino , Ratos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5914-5918, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892465

RESUMO

Measuring electrical potentials in the extracellular space of the brain is a popular technique because it can detect action potentials from putative individual neurons. Electrophysiology is undergoing a transformation where the number of recording channels, and thus number of neurons detected, is growing at a dramatic rate. This rapid scaling is paving the way for both new discoveries and commercial applications; however, as the number of channels increases there will be an increasing need to make these systems more power efficient. One area ripe for optimization are the signal acquisition specifications needed to detect and sort action potentials (i.e., "spikes") to putative single neuron sources. In this work, we take existing recordings collected using Intan hardware and modify them in a way that corresponds to reduced recording performance. The accuracy of these degraded recordings to spike sort using MountainSort4 is evaluated by comparing against expert labels. We show that despite reducing signal specifications by a factor of 2 or more, spike sorting accuracy does not change substantially. Specifically, reducing both sample rate and bit depth from 30 kHz and 16 bits to 12 kHz and 12 bits resulted in a 3% drop in spike sorting accuracy. Our results suggest that current neural acquisition systems are over-specified. These results may inform the design of next generation neural acquisition systems enabling higher channel count systems.


Assuntos
Neurônios , Processamento de Sinais Assistido por Computador , Potenciais de Ação , Fenômenos Eletrofisiológicos , Espaço Extracelular
12.
Cell Rep ; 37(13): 110159, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965435

RESUMO

Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV+) and somatostatin-expressing (SST+), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesize that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We find that while suppressing either interneuron class increases DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increases local field potential signatures of coupling from CA3 to CA1 and decreases signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons has the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Somatostatina/metabolismo , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Giro Denteado/citologia , Córtex Entorrinal/citologia , Feminino , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
PLoS Biol ; 19(9): e3001393, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529647

RESUMO

The receptive field of a neuron describes the regions of a stimulus space where the neuron is consistently active. Sparse spiking outside of the receptive field is often considered to be noise, rather than a reflection of information processing. Whether this characterization is accurate remains unclear. We therefore contrasted the sparse, temporally isolated spiking of hippocampal CA1 place cells to the consistent, temporally adjacent spiking seen within their spatial receptive fields ("place fields"). We found that isolated spikes, which occur during locomotion, are strongly phase coupled to hippocampal theta oscillations and transiently express coherent nonlocal spatial representations. Further, prefrontal cortical activity is coordinated with and can predict the occurrence of future isolated spiking events. Rather than local noise within the hippocampus, sparse, isolated place cell spiking reflects a coordinated cortical-hippocampal process consistent with the generation of nonlocal scenario representations during active navigation.


Assuntos
Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Navegação Espacial/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Eletrodos Implantados , Masculino , Ratos Long-Evans , Ritmo Teta
14.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570699

RESUMO

Representations related to past experiences play a critical role in memory and decision-making processes. The rat hippocampus expresses these types of representations during sharp-wave ripple (SWR) events, and previous work identified a minority of SWRs that contain 'replay' of spatial trajectories at ∼20x the movement speed of the animal. Efforts to understand replay typically make multiple assumptions about which events to examine and what sorts of representations constitute replay. We therefore lack a clear understanding of both the prevalence and the range of representational dynamics associated with replay. Here, we develop a state space model that uses a combination of movement dynamics of different speeds to capture the spatial content and time evolution of replay during SWRs. Using this model, we find that the large majority of replay events contain spatially coherent, interpretable content. Furthermore, many events progress at real-world, rather than accelerated, movement speeds, consistent with actual experiences.


Assuntos
Hipocampo/fisiologia , Consolidação da Memória , Potenciais de Ação , Animais , Comportamento Animal , Masculino , Memória , Modelos Neurológicos , Ratos , Ratos Long-Evans
15.
Curr Biol ; 31(20): 4571-4583.e4, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34473948

RESUMO

Memory enables access to past experiences to guide future behavior. Humans can determine which memories to trust (high confidence) and which to doubt (low confidence). How memory retrieval, memory confidence, and memory-guided decisions are related, however, is not understood. In particular, how confidence in memories is used in decision making is unknown. We developed a spatial memory task in which rats were incentivized to gamble their time: betting more following a correct choice yielded greater reward. Rat behavior reflected memory confidence, with higher temporal bets following correct choices. We applied machine learning to identify a memory decision variable and built a generative model of memories evolving over time that accurately predicted both choices and confidence reports. Our results reveal in rats an ability thought to exist exclusively in primates and introduce a unified model of memory dynamics, retrieval, choice, and confidence.


Assuntos
Tomada de Decisões , Memória , Animais , Comportamento de Escolha , Ratos , Recompensa
16.
Neuron ; 109(19): 3149-3163.e6, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34450026

RESUMO

Executing memory-guided behavior requires storage of information about experience and later recall of that information to inform choices. Awake hippocampal replay, when hippocampal neural ensembles briefly reactivate a representation related to prior experience, has been proposed to critically contribute to these memory-related processes. However, it remains unclear whether awake replay contributes to memory function by promoting the storage of past experiences, facilitating planning based on evaluation of those experiences, or both. We designed a dynamic spatial task that promotes replay before a memory-based choice and assessed how the content of replay related to past and future behavior. We found that replay content was decoupled from subsequent choice and instead was enriched for representations of previously rewarded locations and places that had not been visited recently, indicating a role in memory storage rather than in directly guiding subsequent behavior.


Assuntos
Comportamento de Escolha/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Percepção Espacial/fisiologia , Algoritmos , Animais , Condicionamento Operante , Eletrodos Implantados , Objetivos , Modelos Lineares , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Long-Evans
17.
Mol Psychiatry ; 26(6): 1909-1927, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144356

RESUMO

Measuring animal behavior in the context of experimental manipulation is critical for modeling, and understanding neuropsychiatric disease. Prepulse inhibition of the acoustic startle response (PPI) is a behavioral phenomenon studied extensively for this purpose, but the results of PPI studies are often inconsistent. As a result, the utility of this phenomenon remains uncertain. Here, we deconstruct the phenomenon of PPI and confirm several limitations of the methodology traditionally utilized to describe PPI, including that the underlying startle response has a non-Gaussian distribution, and that the traditional PPI metric changes with different stimuli. We then develop a novel model that reveals PPI to be a combination of the previously appreciated scaling of the startle response, as well as a scaling of sound processing. Using our model, we find no evidence for differences in PPI in a rat model of Fragile-X Syndrome (FXS) compared with wild-type controls. These results in the rat provide a reliable methodology that could be used to clarify inconsistent PPI results in mice and humans. In contrast, we find robust differences between wild-type male and female rats. Our model allows us to understand the nature of these differences, and we find that both the startle-scaling and sound-scaling components of PPI are a function of the baseline startle response. Males and females differ specifically in the startle-scaling, but not the sound-scaling, component of PPI. These findings establish a robust experimental and analytical approach that has the potential to provide a consistent biomarker of brain function.


Assuntos
Síndrome do Cromossomo X Frágil , Inibição Pré-Pulso , Estimulação Acústica , Acústica , Animais , Feminino , Masculino , Camundongos , Ratos , Reflexo de Sobressalto
18.
J Neurosci Methods ; 348: 109006, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33232686

RESUMO

There is an increasing demand for a computationally efficient and accurate point process filter solution for real-time decoding of population spiking activity in multidimensional spaces. Real-time tools for neural data analysis, specifically real-time neural decoding solutions open doors for developing experiments in a closed-loop setting and more versatile brain-machine interfaces. Over the past decade, the point process filter has been successfully applied in the decoding of behavioral and biological signals using spiking activity of an ensemble of cells; however, the filter solution is computationally expensive in multi-dimensional filtering problems. Here, we propose an approximate filter solution for a general point-process filter problem when the conditional intensity of a cell's spiking activity is characterized using a Mixture of Gaussians. We propose the filter solution for a broader class of point process observation called marked point-process, which encompasses both clustered - mainly, called sorted - and clusterless - generally called unsorted or raw- spiking activity. We assume that the posterior distribution on each filtering time-step can be approximated using a Gaussian Mixture Model and propose a computationally efficient algorithm to estimate the optimal number of mixture components and their corresponding weights, mean, and covariance estimates. This algorithm provides a real-time solution for multi-dimensional point-process filter problem and attains accuracy comparable to the exact solution. Our solution takes advantage of mixture dropping and merging algorithms, which collectively control the growth of mixture components on each filtering time-step. We apply this methodology in decoding a rat's position in both 1-D and 2-D spaces using clusterless spiking data of an ensemble of rat hippocampus place cells. The approximate solution in 1-D and 2-D decoding is more than 20 and 4,000 times faster than the exact solution, while their accuracy in decoding a rat position only drops by less than 9% and 4% in RMSE and 95% highest probability coverage area (HPD) performance metrics. Though the marked-point filter solution is better suited for real-time decoding problems, we discuss how the filter solution can be applied to sorted spike data to better reflect the proposed methodology versatility.


Assuntos
Interfaces Cérebro-Computador , Modelos Neurológicos , Potenciais de Ação , Algoritmos , Animais , Neurônios , Ratos
19.
Sci Rep ; 10(1): 20851, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257721

RESUMO

Anatomic evaluation is an important aspect of many studies in neuroscience; however, it often lacks information about the three-dimensional structure of the brain. Micro-CT imaging provides an excellent, nondestructive, method for the evaluation of brain structure, but current applications to neurophysiological or lesion studies require removal of the skull as well as hazardous chemicals, dehydration, or embedding, limiting their scalability and utility. Here we present a protocol using eosin in combination with bone decalcification to enhance contrast in the tissue and then employ monochromatic and propagation phase-contrast micro-CT imaging to enable the imaging of brain structure with the preservation of the surrounding skull. Instead of relying on descriptive, time-consuming, or subjective methods, we develop simple quantitative analyses to map the locations of recording electrodes and to characterize the presence and extent of hippocampal brain lesions.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Microtomografia por Raio-X/métodos , Animais , Amarelo de Eosina-(YS)/farmacologia , Hipocampo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Masculino , Próteses e Implantes , Ratos , Ratos Long-Evans , Crânio
20.
J Neurosci ; 40(38): 7311-7317, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32753514

RESUMO

Animal behavior provides context for understanding disease models and physiology. However, that behavior is often characterized subjectively, creating opportunity for misinterpretation and misunderstanding. For example, spatial alternation tasks are treated as paradigmatic tools for examining memory; however, that link is actually an assumption. To test this assumption, we simulated a reinforcement learning (RL) agent equipped with a perfect memory process. We found that it learns a simple spatial alternation task more slowly and makes different errors than a group of male rats, illustrating that memory alone may not be sufficient to capture the behavior. We demonstrate that incorporating spatial biases permits rapid learning and enables the model to fit rodent behavior accurately. Our results suggest that even simple spatial alternation behaviors reflect multiple cognitive processes that need to be taken into account when studying animal behavior.SIGNIFICANCE STATEMENT Memory is a critical function for cognition whose impairment has significant clinical consequences. Experimental systems aimed at testing various sorts of memory are therefore also central. However, experimental designs to test memory are typically based on intuition about the underlying processes. We tested this using a popular behavioral paradigm: a spatial alternation task. Using behavioral modeling, we show that the straightforward intuition that these tasks just probe spatial memory fails to account for the speed at which rats learn or the types of errors they make. Only when memory-independent dynamic spatial preferences are added can the model learn like the rats. This highlights the importance of respecting the complexity of animal behavior to interpret neural function and validate disease models.


Assuntos
Modelos Neurológicos , Aprendizagem Espacial , Memória Espacial , Animais , Encéfalo/fisiologia , Intuição , Masculino , Ratos , Ratos Long-Evans , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA