Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(23): 6222-6229, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38838341

RESUMO

Unimolecular decay of the formaldehyde oxide (CH2OO) Criegee intermediate proceeds via a 1,3 ring-closure pathway to dioxirane and subsequent rearrangement and/or dissociation to many products including hydroxyl (OH) radicals that are detected. Vibrational activation of jet-cooled CH2OO with two quanta of CH stretch (17-18 kcal mol-1) leads to unimolecular decay at an energy significantly below the transition state barrier of 19.46 ± 0.25 kcal mol-1, refined utilizing a high-level electronic structure method HEAT-345(Q)Λ. The observed unimolecular decay rate of 1.6 ± 0.4 × 106 s-1 is 2 orders of magnitude slower than that predicted by statistical unimolecular reaction theory using several different models for quantum mechanical tunneling. The nonstatistical behavior originates from excitation of a CH stretch vibration that is orthogonal to the heavy atom motions along the reaction coordinate and slow intramolecular vibrational energy redistribution due to the sparse density of states.

2.
J Comput Chem ; 45(16): 1419-1427, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38450778

RESUMO

Determination of equilibrium molecular structures is an essential ingredient in predicting spectroscopic parameters that help in identifying molecular carriers of microwave transitions. Here, the performance of two different ab initio composite approaches for obtaining equilibrium structures, "energy scheme" and "geometry scheme," is explored and compared to semi-experimental equilibrium structures. This study is performed for a set of 11 molecules which includes diatomics, linear triatomics, and a few non-linear molecules. The ab initio calculations were performed using three tiers of composite chemical recipes. The current results show that as the overall rigor of calculation is increased, the semi-experimental and the ab initio numbers agree to within 0.0003 Å for all molecules in the test set. The composite approach based on correcting the potential energy surface (energy scheme) and the one based on correcting the geometry directly (geometry scheme) show excellent agreement with each other. This work represents a step toward development of efficient and highly accurate procedures for computing ab initio equilibrium structures.

3.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38174791

RESUMO

Semi-experimental structures (reSE) are derived from experimental ground state rotational constants combined with theoretical vibrational corrections. They permit a meaningful comparison with equilibrium structures based on high-level ab initio calculations. Typically, the vibrational corrections are evaluated with second-order vibrational perturbation theory (VPT2). The amount of error introduced by this approximation is generally thought to be small; however, it has not been thoroughly quantified. Herein, we assess the accuracy of theoretical vibrational corrections by extending the treatment to fourth order (VPT4) for a series of small linear molecules. Typical corrections to bond distances are on the order of 10-5 Å. Larger corrections, nearly 0.0002 Å, are obtained to the bond lengths of NCCN and CNCN. A borderline case is CCCO, which will likely require variational computations for a satisfactory answer. Treatment of vibrational effects beyond VPT2 will thus be important when one wishes to know bond distances confidently to four decimal places (10-4 Å). Certain molecules with shallow bending potentials, e.g., HOC+, are not amenable to a VPT2 description and are not improved by VPT4.

4.
J Am Chem Soc ; 146(2): 1512-1521, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170910

RESUMO

Delocalization of the unpaired electron in π-conjugated radicals has profound implications for their chemistry, but direct and quantitative characterization of this electronic structure in isolated molecules remains challenging. We apply hyperfine-resolved microwave rotational spectroscopy to rigorously probe π-delocalization in propargyl, CH2CCH, a prototypical resonance-stabilized radical and key reactive intermediate. Using the spectroscopic constants derived from the high-resolution cavity Fourier transform microwave measurements of an exhaustive set of 13C- and 2H-substituted isotopologues, together with high-level ab initio calculations of zero-point vibrational effects, we derive its precise semiexperimental equilibrium geometry and quantitatively characterize the spatial distribution of its unpaired electron. Our results highlight the importance of considering both spin-polarization and orbital-following contributions when interpreting the isotropic hyperfine coupling constants of π radicals. These physical insights are strengthened by a parallel analysis of the isoelectronic species cyanomethyl, CH2CN, using new 13C measurements also reported in this work. A detailed comparison of the structure and electronic properties of propargyl, cyanomethyl, and other closely related species allows us to correlate trends in their chemical bonding and electronic structure with critical changes in their reactivity and thermochemistry.

5.
J Chem Phys ; 158(4): 044301, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725515

RESUMO

In this work, we present the spectral analysis of 1H- and 2H-1,2,3-triazole vibrationally excited states alongside provisional and practical computational predictions of the excited-state quartic centrifugal distortion constants. The low-energy fundamental vibrational states of 1H-1,2,3-triazole and five of its deuteriated isotopologues ([1-2H]-, [4-2H]-, [5-2H]-, [4,5-2H]-, and [1,4,5-2H]-1H-1,2,3-triazole), as well as those of 2H-1,2,3-triazole and five of its deuteriated isotopologues ([2-2H]-, [4-2H]-, [2,4-2H]-, [4,5-2H]-, and [2,4,5-2H]-2H-1,2,3-triazole), are studied using millimeter-wave spectroscopy in the 130-375 GHz frequency region. The normal and [2-2H]-isotopologues of 2H-1,2,3-triazole are also analyzed using high-resolution infrared spectroscopy, determining the precise energies of three of their low-energy fundamental states. The resulting spectroscopic constants for each of the vibrationally excited states are reported for the first time. Coupled-cluster vibration-rotation interaction constants are compared with each of their experimentally determined values, often showing agreement within 500 kHz. Newly available coupled-cluster predictions of the excited-state quartic centrifugal distortion constants based on fourth-order vibrational perturbation theory are benchmarked using a large number of the 1,2,3-triazole tautomer isotopologues and vibrationally excited states studied.

6.
J Phys Chem A ; 127(4): 924-937, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657011

RESUMO

Geminal diols are known to be important intermediates in atmospheric ozonolysis and the aerosol cycle. Recently, the simplest member of this class, methanediol, was interrogated in the gas phase with infrared spectroscopy. To aid in future spectroscopic investigations of methanediol, including in the interstellar medium, we report fundamental frequencies and rovibrational constants for the two rotamers of this molecule using ab initio composite methods along with vibrational perturbation theory. Sensitivity of the predictions to the level of theory and the treatment of anharmonic resonances are carefully assessed. The OH stretching harmonic frequencies of both rotamers are particularly sensitive to the level of theory. The CH stretches of the Cs rotamer are sensitive to the treatment of anharmonic resonances with VPT2-based effective Hamiltonian models. Equilibrium bond distances and harmonic frequencies are converged conservatively to within 0.0005 Å and 3 cm-1, respectively. The effect of tunneling on the rotational constants is investigated with a 2D variational calculation, based on a relaxed hydroxyl torsional potential energy surface. Tunneling is found to be negligible in the lower energy C2 rotamer but should modify the rotational constants of the Cs rotamer on the order of MHz, giving rise to rotational line splittings of the same order. The rovibrational constants of the Cs rotamer are dominated by hydroxyl torsional effects, and here we see evidence for the breakdown of vibrational perturbation theory.

7.
J Phys Chem A ; 126(44): 8196-8210, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36314454

RESUMO

The millimeter/submillimeter spectrum of 1H-1,2,4-triazole is reported from 70 to 700 GHz, providing spectral frequencies directly comparable to radio telescopes and enabling an astronomical search. Using four deuteriated samples of 1,2,4-triazole, we measured, assigned, and least-squares fit transitions for 26 isotopologues to sextic A- and S-reduced Hamiltonians. An accurate and precise semi-experimental (reSE) structure from 50 independent moments of inertia has been obtained. Structural parameters are provided with 2σ uncertainties within 0.0009 Å for bond distances and 0.09° for bond angles. The structural parameters are in quite good agreement with the best theoretical estimate (BTE) obtained using CCSD(T)/cc-pCV5Z, where an agreement within the 2σ uncertainty is observed for all but one case. Despite the large number of isotopologues already included in this structure, more may be useful. One isotopologue, [1,3-2H]-1H-1,2,4-triazole, is observed to closely approach the oblate asymmetric-top limit, resulting in a clear breakdown of the A-reduction Hamiltonian. The highly accurate reSE structure and subsequent analysis demonstrates that the S-reduction is also unable to adequately model the spectrum of this isotopologue.

8.
J Chem Phys ; 157(8): 084311, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36050020

RESUMO

Butyl radicals (n-, s-, i-, and tert-butyl) are formed from the pyrolysis of stable precursors (1-pentyl nitrite, 2-methyl-1-butyl nitrite, isopentyl nitrite, and azo-tert-butane, respectively). The radicals are doped into a beam of liquid helium droplets and probed with infrared action spectroscopy from 2700 to 3125 cm-1, allowing for a low temperature measurement of the CH stretching region. The presence of anharmonic resonance polyads in the 2800-3000 cm-1 region complicates its interpretation. To facilitate spectral assignment, the anharmonic resonances are modeled with two model Hamiltonian approaches that explicitly couple CH stretch fundamentals to HCH bend overtones and combinations: a VPT2+K normal mode model based on coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] quartic force fields and a semi-empirical local mode model. Both of these computational methods provide generally good agreement with the experimental spectra.

9.
J Chem Phys ; 155(13): 134302, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624978

RESUMO

The protonated HCl dimer and trimer complexes were prepared by pulsed discharges in supersonic expansions of helium or argon doped with HCl and hydrogen. The ions were mass selected in a reflectron time-of-flight spectrometer and investigated with photodissociation spectroscopy in the IR and near-IR regions. Anharmonic vibrational frequencies were computed with VPT2 at the MP2/cc-pVTZ level of theory. The Cl-H stretching fundamentals and overtones were measured in addition to stretch-torsion combinations. VPT2 theory at this level confirms the proton-bound structure of the dimer complex and provides a reasonably good description of the anharmonic vibrations in this system. The trimer has a HCl-HClH+-ClH structure in which a central chloronium ion is solvated by two HCl molecules via hydrogen bonding. VPT2 reproduces anharmonic frequencies for this system, including several combinations involving core ion Cl-H stretches, but fails to describe the relative band intensities.

10.
J Phys Chem A ; 125(31): 6761-6771, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343002

RESUMO

The thermal unimolecular decomposition of a methoxy radical (CH3O), a key intermediate in the combustion of methane, methanol, and other hydrocarbons, was studied using high-level coupled-cluster calculations, followed by E,J-resolved master equation analyses. The experimental results available for a wide range of temperature and pressure are in striking agreement with the calculations. In line with a previous theoretical study that used a one-dimensional master equation, the tunneling correction is found to exhibit a marked pressure dependence, being the largest at low pressure. This curious effect on the tunneling enhancement also affects the calculated kinetic isotope effect, which falls initially with pressure but is predicted to rise again at high pressures. These findings serve to reconcile a set of conflicting results regarding the importance of tunneling in this prototype unimolecular reaction and also motivate further experimental investigation. This study also exemplifies how changes in the energy redistribution due to collisions manifest in the tunneling rates.

11.
J Phys Chem A ; 125(6): 1301-1324, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33506678

RESUMO

This article primarily discusses the utility of vibrational perturbation theory for the prediction of X-H stretching vibrations with particular focus on the specific variant, second-order vibrational perturbation theory with resonances (VPT2+K). It is written as a tutorial, reprinting most important formulas and providing numerous simple examples. It discusses the philosophy and practical considerations behind vibrational simulations with VPT2+K, including but not limited to computational method selection, cost-saving approximations, approaches to evaluating intensity, resonance identification, and effective Hamiltonian structure. Particular attention is given to resonance treatments, beginning with simple Fermi dyads and gradually progressing to arbitrarily large polyads that describe both Fermi and Darling-Dennison resonances. VPT2+K combined with large effective Hamiltonians is shown to be a reliable framework for modeling the complicated CH stretching spectra of alkenes. An error is also corrected in the published analytic formula for the VPT2 transition moment between the vibrational ground state and triply excited states.

12.
J Chem Phys ; 152(17): 174309, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384862

RESUMO

Molecular cations of HO4 + and DO4 + are produced in a supersonic expansion. They are mass-selected, and infrared photodissociation spectra of these species are measured with the aid of argon-tagging. Although previous theoretical studies have modeled these systems as proton-bound dimers of molecular oxygen, infrared spectra have free OH stretching bands, suggesting other isomeric structures. As a consequence, we undertook extensive computational studies. Our conformer search used a composite method based on an economical combination of single- and multi-reference theories. Several conformers were located on the quintet, triplet, and singlet surfaces, spanning in energy of only a few thousand wavenumbers. Most of the singlet and triplet conformers have pronounced multiconfigurational character. Previously unidentified covalent-like structures (H-O-O-O-O) on the singlet and triplet surfaces likely represent the global minima. In our experiments, HO4 + is formed in a relatively hot environment, and similar experiments have been shown capable of producing multiple conformers in low-lying electronic states. None of the predicted HO4 + isomers can be ruled out a priori based on energetic arguments. We interpret our argon-tagged spectra with Second-Order Vibrational Perturbation Theory with Resonances (VPT2+K). The presence of one or more covalent-like isomers is the only reasonable explanation for the spectral features observed.

13.
J Chem Phys ; 152(2): 024302, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941336

RESUMO

Sulfurous acid (H2SO3) is an infamously elusive molecule. Although some theoretical papers have supposed possible roles for it in more complicated systems, it has yet to be experimentally observed. To aid experiment in detecting this molecule, we have examined the H2O + SO2 potential energy surface at the CCSDT(Q)/CBS//CCSD(T)-F12b/cc-pVTZ-F12b level of theory to resolve standing discrepancies in previous reports and predict the gas-phase vibrational spectrum for H2SO3. We find that sulfurous acid has two potentially detectable rotamers, separated by 1.1 kcal mol-1 ΔH0K with a torsional barrier of 1.6 kcal mol-1. The sulfonic acid isomer is only 6.9 kcal mol-1 above the lowest enthalpy sulfurous acid rotamer, but the barrier to form it is 57.2 kcal mol-1. Error in previous reports can be attributed to misidentified stationary points, the use of density functionals that perform poorly for this system, and, most importantly, the basis set sensitivity of sulfur. Using VPT2+K, we determine that the intense S=O stretch fundamental of each species is separated from other intense peaks by at least 25 cm-1, providing a target for identification by infrared spectroscopy.

14.
Phys Chem Chem Phys ; 21(19): 9747-9758, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31038509

RESUMO

Alkylperoxy radicals (RO2˙) are key intermediates in combustion and atmospheric oxidation processes. As such, reliable detection and monitoring of these radicals can provide a wealth of information about the underlying chemistry. The tert-butyl peroxy radical is the archetypal tertiary peroxy radical, yet its vibrational spectroscopy is largely unexplored. To aid in future experimental investigations, we have performed high-level theoretical studies of the fundamental vibrational frequencies of the ground- and first excited states. A conformer search on both electronic surfaces reveals single minimum-energy structures. We predict an Ã2A' ← X[combining tilde]2A'' adiabatic excitation energy of 7738 cm-1via focal point analysis, approximating the CCSDT(Q)/CBS level of theory. This excitation energy agrees to within 17 cm-1 of the most accurate experimental measurement. We compute CCSD(T) fundamental vibrational frequencies via second-order vibrational perturbation theory (VPT2), using a hybrid force field in which the quadratic (cubic/quartic) force constants are evaluated with the ANO1 (ANO0) basis set. Anharmonic resonance polyads are treated with the VPT2 + K effective Hamiltonian approach. Among the predicted fundamental frequencies, the ground state O-O stretch, excited state O-O stretch, and excited state C-O-O bend fundamentals are predicted at 1138, 959, and 490 cm-1, respectively. Basis set sensitivity is found to be particularly great for the O-O stretches, similar to what has already been noted in smaller, unbranched peroxy radicals. Exempting these O-O stretches, agreement with the available experimental fundamentals is generally good (±10 cm-1).

15.
J Phys Chem A ; 123(16): 3558-3568, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30946595

RESUMO

Helium-solvated ethylperoxy radicals (CH3CH2OO•) are formed via the in situ reaction between 2A' ethyl radical and 3Σg- dioxygen. The reactants are captured sequentially through the droplet pick-up technique. Helium droplets are doped with ethyl radical via pyrolysis of di- tert-amyl peroxide or n-propylnitrite in an effusive, low-pressure source. An infrared spectrum of ethylperoxy, in the CH stretching region, is recorded with species-selective droplet beam depletion spectroscopy. Spectral assignments are made via comparisons to second-order vibrational perturbation theory with resonances (VPT2 + K) based on coupled-cluster full quartic force fields. Cubic and quartic force constants, evaluated using a small basis set, are transformed into the normal coordinate system of the higher level quadratic force constants. This transformation procedure eliminates the mismatch between normal modes, which is a source of error whenever normal coordinate force constants from different levels of theory are combined. The spectrum shows signatures of both the C1 gauche and C s trans rotamers in an approximate 2:1 ratio; this is despite the prediction that the gauche rotamer lies 44 cm-1 lower on the zero-Kelvin enthalpic potential surface for torsional interconversion. Helium droplets are 0.4 K at equilibrium; therefore, in situ ethylperoxy production is highly nonthermal.

16.
J Phys Chem A ; 123(17): 3782-3792, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30983342

RESUMO

Fulvenallene is the global minimum on the C7H6 potential energy surface. Rearrangement of fulvenallene to other C7H6 species and dissociation to produce fulvenallenyl radical (C7H5) is carried out in a continuous-wave SiC pyrolysis furnace at 1500 K. Prompt pick-up and solvation by helium droplets allows for the acquisition of vibrational spectra of these species in the CH stretching region. Anharmonic frequencies for fulvenallene, fulvenallenyl, and three isomers of ethynylcyclopentadiene are computed ab initio; VPT2+K spectral simulations are based on hybrid CCSD(T) force fields with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. The acetylenic CH stretch of the fulvenallenyl radical is a sensitive marker of the extent by which the unpaired electron is delocalized throughout the conjugated propargyl and cyclopentadienyl subunits. The nature of this electron delocalization is explored with spin density calculations at the ROHF-CCSD(T)/ANO1 level of theory. Atomic partitioning of the spin density allows for a description of the fulvenallenyl radical in terms of two resonance structures: fulvenallenyl is approximately 24% allenic and 76% acetylenic.

17.
J Phys Chem A ; 122(1): 148-158, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29215278

RESUMO

Isoprene (C5H8) is an abundant, reactive tropospheric hydrocarbon, derived from biogenic emissions. A detailed understanding of the spectroscopy of isoprene is therefore desirable. Isoprene monomer is isolated in helium droplets and its infrared spectrum is measured in the CH stretching region. Anharmonic frequencies are predicted by VPT2+K simulations employing CCSD(T) force fields with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. The vast majority of the spectral features can be assigned to trans-isoprene on the basis of these computations. Some features of the higher energy gauche conformer are also assignable, by comparison to experiments using heated isoprene. Convergent ab initio thermochemistry is presented for the isomerization pathway, for which the partition function explicitly accounts for the eigenstates associated with separate, uncoupled one-dimensional potential surfaces for methyl torsion and internal rotation between rotamers. The respective 0 and 298.15 K trans/gauche energy differences are 2.82 and 2.52 kcal/mol, which implies a room temperature gauche population of 2.8%.

18.
J Phys Chem A ; 121(49): 9466-9473, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29172509

RESUMO

Catalytic thermal cracking of O2 is employed to dope helium droplets with O(3P) atoms. Mass spectrometry of the doped droplet beam reveals an O2 dissociation efficiency larger than 60%; approximately 26% of the droplet ensemble is doped with single oxygen atoms. Sequential capture of O(3P) and HCN leads to the production of a hydrogen-bound O-HCN complex in a 3Σ electronic state, as determined via comparisons of experimental and theoretical rovibrational Stark spectroscopy. Ab initio computations of the three lowest lying intermolecular potential energy surfaces reveal two isomers, the hydrogen-bound (3Σ) O-HCN complex and a nitrogen-bound (3Π) HCN-O complex, lying 323 cm-1 higher in energy. The HCN-O to O-HCN interconversion barrier is predicted to be 42 cm-1. Consistent with this relatively small interconversion barrier, there is no experimental evidence for the production of the nitrogen-bound species upon sequential capture of O(3P) and HCN.

19.
J Phys Chem A ; 121(40): 7576-7587, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28937761

RESUMO

Gas-phase cyclobutyl radical (•C4H7) is produced via pyrolysis of cyclobutylmethyl nitrite (C4H7(CH2)ONO). Other •C4H7 radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the force field for the allylcarbinyl radical. For all •C4H7 radicals, resonance polyads in the 2800-3000 cm-1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH2 bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported •C4H7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the •C4H7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. The allylcarbinyl radical is a higher-energy •C4H7 intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.

20.
J Chem Phys ; 145(22): 224304, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984908

RESUMO

The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH3(CH2)3ONO] and i-butyl nitrite [(CH3)2CHCH2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm-1. The CH stretching modes observed above 3000 cm-1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm-1, the spectra of n- and i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using "dressed" Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CHn bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH2/CH3 group. Spectral simulations using the local mode approach are in excellent agreement with experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA