Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Strength Cond Res ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39016291

RESUMO

ABSTRACT: Aspin, GL, Graham, M, Franklin, J, Hicks, KM, and Taylor, JM. The relationship between the anaerobic speed reserve and acute responses to high-intensity interval training in female soccer players. J Strength Cond Res XX(X): 000-000, 2024-The anaerobic speed reserve (ASR) is a popular method of profiling soccer players, often used to individualize training prescription. This study explored the reliability of ASR profiling, and the relationship between the ASR and acute physiological responses to high-intensity interval training (HIIT). Acute physiological responses to different HIIT types were also compared. Thirteen subelite female soccer players aged 20.2 ± 4.6 years completed 6 exercise sessions. In sessions 1-2, players completed a 40-m sprint to assess maximal sprint speed (MSS) and 1600-m time-trial to estimate maximal aerobic speed (MAS), which were used to calculate ASR and assess test-retest reliability. In sessions 3-6, players completed 4 HIIT sessions (repeated-sprint training, sprint interval training, long intervals, and short intervals HIIT). Intensities for long and short intervals HIIT were individualized according to MAS. Ratings of perceived exertion (RPE), heart rate (HR), and postsession blood lactates were recorded throughout. Relationships between the ASR and acute responses to HIIT, and between HIIT session comparisons in outcome measures were assessed. Anaerobic speed reserve (coefficient of variation ± 95% confidence limits; 3.1 ± 1.5%), MAS (1.8 ± 1.3%), and MSS (0.8 ± 0.6%) indicated acceptable reliability. Moderate correlations between ASR and RPE (r = 0.33), postsession blood lactate (r = 0.34), and HR (r = 0.37) were observed during long intervals HIIT. A strong correlation was observed between ASR and RPE during SIT (r = 0.50). Sprint interval training elicited higher RPE's and postsession blood lactate's than other HIIT sessions. Anaerobic speed reserve has good reliability and may influence acute physiological responses to HIIT in female soccer players.

2.
Development ; 135(5): 899-908, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18234727

RESUMO

The Notch pathway plays multiple roles during vertebrate somitogenesis, functioning in the segmentation clock and during rostral/caudal (R/C) somite patterning. Lunatic fringe (Lfng) encodes a glycosyltransferase that modulates Notch signaling, and its expression patterns suggest roles in both of these processes. To dissect the roles played by Lfng during somitogenesis, a novel allele was established that lacks cyclic Lfng expression within the segmentation clock, but that maintains expression during R/C somite patterning (Lfng(DeltaFCE1)). In the absence of oscillatory Lfng expression, Notch activation is ubiquitous in the PSM of Lfng(DeltaFCE1) embryos. Lfng(DeltaFCE1) mice exhibit severe segmentation phenotypes in the thoracic and lumbar skeleton. However, the sacral and tail vertebrae are only minimally affected in Lfng(DeltaFCE1) mice, suggesting that oscillatory Lfng expression and cyclic Notch activation are important in the segmentation of the thoracic and lumbar axial skeleton (primary body formation), but are largely dispensable for the development of sacral and tail vertebrae (secondary body formation). Furthermore, we find that the loss of cyclic Lfng has distinct effects on the expression of other clock genes during these two stages of development. Finally, we find that Lfng(DeltaFCE1) embryos undergo relatively normal R/C somite patterning, confirming that Lfng roles in the segmentation clock are distinct from its functions in somite patterning. These results suggest that the segmentation clock may employ varied regulatory mechanisms during distinct stages of anterior/posterior axis development, and uncover previously unappreciated connections between the segmentation clock, and the processes of primary and secondary body formation.


Assuntos
Padronização Corporal/fisiologia , Desenvolvimento Ósseo , Osso e Ossos/embriologia , Glicosiltransferases/genética , Animais , Animais Recém-Nascidos , Osso e Ossos/anormalidades , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Glicosiltransferases/deficiência , Hibridização In Situ , Camundongos , Oscilometria , Receptores Notch/genética , Receptores Notch/fisiologia , Deleção de Sequência , Coluna Vertebral/anormalidades , Saco Vitelino/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA