Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Aging (Albany NY) ; 14(8): 3365-3386, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477123

RESUMO

TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Proliferação de Células , Suplementos Nutricionais , Receptores ErbB/genética , Mutação com Ganho de Função , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53 , Neoplasias Pancreáticas
2.
Sex Health ; 16(1): 47-55, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30274568

RESUMO

Background In New Zealand, pre-exposure prophylaxis (PrEP) should target gay and bisexual men (GBM), and equity is an important principle. Baseline characteristics of GBM offered PrEP in a demonstration project with an enrolment quota of 50% non-Europeans are described. METHODS: An open-label, single-arm treatment evaluation study design ('NZPrEP') was used. The settings were four publicly funded sexual health clinics in Auckland in 2017. The study population was 150 GBM recruited from clinics, community sources and social media. Participants self-completed an online questionnaire about PrEP awareness, attitudes and sexual risk behaviour in the last 3 months. Baseline characteristics are described and examined to determine whether these were associated with PrEP initiation status (self-referral vs doctor/nurse recommendation). RESULTS: In total, 150 GBM of whom half (52%) were non-European, including 21.3% Maori, 19.3% Asian and 8.7% Pacific, were enrolled into the study. Two-thirds (65.3%) self-referred for PrEP and one-third (34.7%) were recommended PrEP by the doctor/nurse. Participants reported a high number of male condomless receptive anal intercourse partners (MenAICLR) (median 3, range 0-50), with 10% reporting 10 or more MenAICLR and 45.3% reporting group sex. In the previous year, 65.3% had a sexually transmissible infection (STI); 18% had rectal chlamydia or gonorrhoea at enrolment. Almost half (47.7%) had recently used drugs with sex, including 8.1% who used methamphetamine. Participants recommended PrEP had lower education, lived less centrally and had a higher STI prevalence than PrEP self-referrers, but their risk behaviour was similar. CONCLUSIONS: Early PrEP adopters in New Zealand have high HIV risk. Demonstration projects should consider equity mechanisms so that minorities can participate meaningfully.


Assuntos
Infecções por HIV/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Comportamentos de Risco à Saúde , Homossexualidade Masculina/etnologia , Homossexualidade Masculina/estatística & dados numéricos , Profilaxia Pré-Exposição , Adolescente , Adulto , Etnicidade , Humanos , Masculino , Pessoa de Meia-Idade , Grupos Minoritários , Nova Zelândia/epidemiologia , Comportamento Sexual , Minorias Sexuais e de Gênero/estatística & dados numéricos , Medicina Estatal , Inquéritos e Questionários , População Branca , Adulto Jovem
3.
Curr Pharm Des ; 20(24): 3944-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24138714

RESUMO

The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico
5.
Cell Cycle ; 11(23): 4447-61, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23159854

RESUMO

Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC 50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/Dox (R) cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.


Assuntos
Proteínas de Fase Aguda/metabolismo , Berberina/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Lipocalinas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Fase Aguda/genética , Antibióticos Antineoplásicos/farmacologia , Benzilaminas/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Lipocalina-2 , Lipocalinas/genética , Células MCF-7 , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinazolinas/farmacologia , Sirolimo/farmacologia , Sulfonamidas/farmacologia , Tirfostinas/farmacologia
6.
Oncotarget ; 3(10): 1068-111, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23085539

RESUMO

The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Mutação/genética , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Neoplasias/genética , Neoplasias/patologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética
8.
Oncotarget ; 3(12): 1505-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23455493

RESUMO

Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética
9.
Cell Cycle ; 10(17): 3003-15, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21869603

RESUMO

Elucidating the response of breast cancer cells to chemotherapeutic and hormonal based drugs and radiation is clearly important as these are common treatment approaches. Signaling cascades often involved in chemo-, hormonal- and radiation resistance are the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways. In the following studies we have examined the effects of activation of the Ras/PI3K/PTEN/Akt/mTOR cascade in the response of MCF-7 breast cancer cells to chemotherapeutic- and hormonal-based drugs and radiation. Activation of Akt by introduction of conditionally-activated Akt-1 gene could result in resistance to chemotherapeutic and hormonal based drugs as well as radiation. We have determined that chemotherapeutic drugs such as doxorubicin or the hormone based drug tamoxifen, both used to treat breast cancer, resulted in the activation of the Raf/MEK/ERK pathway which is often associated with a pro-proliferative, anti-apoptotic response. In drug sensitive MCF-7 cells which have wild-type p53; ERK, p53 and downstream p21 (Cip-1 ) were induced upon exposure to doxorubicin. In contrast, in the drug resistant cells which expressed activated Akt-1, much lower levels of p53 and p21 (Cip1) were induced upon exposure to doxorubicin. These results indicate the involvement of the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways in the response to chemotherapeutic and hormonal based drugs. Understanding how breast cancers respond to chemo- and hormonal-based therapies and radiation may enhance the ability to treat breast cancer more effectively.


Assuntos
Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Neoplasias da Mama/terapia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Tolerância a Radiação , Retroviridae/genética , Retroviridae/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tamoxifeno/farmacologia , Transfecção , Proteína Supressora de Tumor p53/metabolismo
10.
Oncotarget ; 2(7): 538-50, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21730367

RESUMO

Elucidating the response of breast cancer cells to chemotherapeutic and hormonal based drugs is clearly important as these are frequently used therapeutic approaches. A signaling pathway often involved in chemo- and hormonal-resistance is the Ras/PI3K/PTEN/Akt/mTOR cascades. In the studies presented in this report, we have examined the effects of constitutive activation of Akt on the sensitivity of MCF-7 breast cancer cells to chemotherapeutic- and hormonal-based drugs as well as mTOR inhibitors. MCF-7 cells which expressed a constitutively-activated Akt-1 gene [∆Akt-1(CA)] were more resistant to doxorubicin, etoposide and 4-OH-tamoxifen (4HT) than cells lacking ∆Akt-1(CA). Cells which expressed ∆Akt-1(CA) were hypersensitive to the mTOR inhibitor rapamycin. Furthermore, rapamycin lowered the IC50s for doxorubicin, etoposide and 4HT in the cells which expressed ∆Akt-1(CA), demonstrating a potential improved method for treating certain breast cancers which have deregulated PI3K/PTEN/Akt/mTOR signaling. Understanding how breast cancers respond to chemo- and hormonal-based therapies and the mechanisms by which they can become drug resistant may enhance our ability to treat breast cancer. These results also document the potential importance of knowledge of the mutations present in certain cancers which may permit more effective therapies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Etoposídeo/farmacologia , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Tamoxifeno/farmacologia
11.
Oncotarget ; 2(3): 135-64, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21411864

RESUMO

The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Quinases raf/antagonistas & inibidores , Proteínas ras/antagonistas & inibidores , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo
12.
Adv Enzyme Regul ; 51(1): 152-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21035484

RESUMO

We have isolated cell with the cancer initiating cell (CIC) phenotype from PC3 cells. The PC3/(CIC) cells are more resistant than the PC3/(BC) cells to chemotherapeutic drugs such as docetaxel which is used to treat prostate cancer. Thus these prostate CICs could lay dormant and persist even after chemotherapeutic drug treatment. Then when the chemotherapeutic drug is removed, they could potentially repopulate the original tumor site or metastize to a distant site. However, the prostate CICs were not significantly more resistant to drugs which target EGFR, NF-κB, Smo and the natural product genistein. Interesting the prostate CICs could be rendered more sensitive to docetaxel by inclusion of suboptimal doses of genistein, cyclopamine, and EGFR inhibitors. In contrast, addition of suboptimal amounts of genistein, cyclopamine, or EGFR inhibitors did not increase the sensitivity of the PC/(BC) cells to docetaxel. Similar results were observed when combination experiments were performed with cyclopamine and suboptimal doses of either genistein or docetaxel. The BC cells are usually more rapidly proliferating than the CICs. Thus the CICs are not as sensitive to docetaxel which targets replication. In contrast, the CICs could be rendered sensitive to docetaxel or cyclopamine by co-treatment with certain other drugs, including the natural product genistein which is present in the human diet of many people, especially Asians. Genistein is by itself only weakly toxic to prostate and other cancer cells. That is probably one of the big reasons that it can be used as a dietary supplement for prostate and breast cancers. It is clear from our studies that low doses of genistein can increase the sensitivity of prostate CICs to drugs such as docetaxel and cyclopamine, two drugs either used or under consideration for prostate cancer therapy.


Assuntos
Neoplasias/patologia , Neoplasias/fisiopatologia , Células-Tronco Neoplásicas/fisiologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Suplementos Nutricionais , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Neoplasias/terapia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/terapia , Transdução de Sinais/fisiologia
16.
Adv Enzyme Regul ; 48: 113-35, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18423407
17.
Mol Med Rep ; 1(2): 139-60, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-21479390

RESUMO

Breast cancer ranks as the second most common cause of cancer death among women in the United States. Anticancer agents are an important component of breast cancer therapy. Drugs frequently used to treat breast cancer include methotrexate, 5-fluorouracil (5-FU), cyclophosphamide, anthracyclines, taxanes, trastuzumab, tamoxifen and aromatase inhibitors. These agents inhibit breast cancer progression by a variety of different mechanisms. Mutations may occur in cancer cells, which result in the elevated expression or constitutive activation of various growth factor receptors. The Raf/MEK/ERK and PI3K/Akt pathways are often activated by mutations in these growth factor receptors. These pathways are regulated by upstream Ras, which is mutated in 20-30% of human cancers. Downstream B-Raf and PI3K are also activated by mutation. Many of the events elicited by the Raf/MEK/ERK and PI3K/Akt pathways have direct effects on survival and the proliferative pathways. Aberrant regulation of the Raf/MEK/ERK and PI3K/Akt pathways can contribute to uncontrolled cell growth and lead to malignant transformation. Effective targeting of these pathways may result in the suppression of cell growth and the death of malignant cells. This review focuses on the targeting of the Raf/MEK/ERK and PI3K/Akt pathways with small molecule inhibitors, as well as on the effects of conventional chemo- and hormonal therapies in the treatment of breast cancer.

18.
Adv Enzyme Regul ; 47: 64-103, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17382374
19.
Mol Cancer Ther ; 6(2): 618-32, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17308059

RESUMO

Ansamycin antibiotics that target heat shock protein 90 function are being developed as anticancer agents but are also known to be dose limiting in patients due to hepatotoxicity. Herein, to better understand how the normal tissue toxicity of geldanamycins could be ameliorated to improve the therapeutic index of these agents, we examined the interactions of 17-allylamino-17-demethoxygeldanamycin (17AAG) and the secondary bile acid deoxycholic acid (DCA) in hepatocytes and fibroblasts. DCA and 17AAG interacted in a greater than additive fashion to cause hepatocyte cell death within 2 to 6 h of coadministration. As single agents DCA, but not 17AAG, enhanced the activity of extracellular signal-regulated kinase 1/2, AKT, c-Jun NH(2)-terminal kinase 1/2 (JNK1/2), and p38 mitogen-activated protein kinase (MAPK). Combined exposure of cells to DCA and 17AAG further enhanced JNK1/2 and p38 MAPK activity. Inhibition of JNK1/2 or p38 MAPK, but not activator protein-1, suppressed the lethality of 17AAG and of 17AAG and DCA. Constitutive activation of AKT, but not MAPK/extracellular signal-regulated kinase kinase 1/2, suppressed 17AAG- and DCA-induced cell killing and reduced activation of JNK1/2. DCA and 17AAG exposure promoted association of BAX with mitochondria, and functional inhibition of BAX or caspase-9, but not of BID and caspase-8, suppressed 17AAG and DCA lethality. DCA and 17AAG interacted in a greater than additive fashion to promote and prolong the generation of reactive oxygen species (ROS). ROS-quenching agents, inhibition of mitochondrial function, expression of dominant-negative thioredoxin reductase, or expression of dominant-negative apoptosis signaling kinase 1 suppressed JNK1/2 and p38 MAPK activation and reduced cell killing after 17AAG and DCA exposure. The potentiation of DCA-induced ROS production by 17AAG was abolished by Ca(2+) chelation and ROS generation, and cell killing following 17AAG and DCA treatment was abolished in cells lacking expression of PKR-like endoplasmic reticulum kinase. Thus, DCA and 17AAG interact to stimulate Ca(2+)-dependent and PKR-like endoplasmic reticulum kinase-dependent ROS production; high levels of ROS promote intense activation of the p38 MAPK and JNK1/2 pathways that signal to activate the intrinsic apoptosis pathway.


Assuntos
Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Ácido Desoxicólico/farmacologia , Detergentes/farmacologia , Hepatócitos/efeitos dos fármacos , Lactamas Macrocíclicas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Adenoviridae/genética , Animais , Western Blotting , Cálcio , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Ceramidas/metabolismo , Quimioterapia Combinada , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA