Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(9): 2529-2536, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412511

RESUMO

Electrochemically active liquid organic hydrogen carriers (EC-LOHCs) can be used directly in fuel cells; so far, however, they have rather low hydrogen storage capacities. In this work, we study the electrooxidation of a potential EC-LOHC with increased energy density, 1-cyclohexylethanol, which consists of two storage functionalities (a secondary alcohol and a cyclohexyl group). We investigated the product spectrum on low-index Pt single-crystal surfaces in an acidic environment by combining cyclic voltammetry, chronoamperometry, and in situ infrared spectroscopy, supported by density functional theory. We show that the electrooxidation of 1-cyclohexylethanol is a highly structure-sensitive reaction with activities Pt(111) ≫ Pt(100) > Pt(110). Most importantly, we demonstrate that 1-cyclohexylethanol can be directly converted to acetophenone, which desorbs from the electrode surface. However, decomposition products are formed, which lead to poisoning. If the latter side reactions could be suppressed, the electrooxidation of 1-cyclohexylethanol would enable the development of EC-LOHCs with greatly increased hydrogen storage capacities.

2.
Chemistry ; 30(11): e202303515, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38200652

RESUMO

We report on the synthesis and characterization of a family of three water-soluble bola-amphiphilic zinc-porphyrin-perylenebisimide triads containing oligo carboxylic-acid capped Newkome dendrons in the periphery. Variations of the perylenebisimide (PBI) core geometry and dendron size (G1 and G2 dendrons with 3- and 9-carboxylic acid groups respectively) allow for tuning the supramolecular aggregation behavior with respect to variation of the molecular architecture. The triads show good solubility in basic aqueous media and aggregation to supramolecular assemblies. Theoretical investigations at the DFT level of theory accompanied by electrochemical measurements unravel the geometric and electronic structure of the amphiphiles. UV/Vis and fluorescence titrations with varying amounts of THF demonstrate disaggregation.

3.
J Chem Phys ; 159(7)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602805

RESUMO

The transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved. In this study, we investigate the surface chemistry of oxa-norbornadiene/quadricyclane derivatives on a Pt(111) surface. Specifically, we focus on the energy storage and release properties of molecules that are substituted with ester moieties of different sizes. For our model catalytic approach, synchrotron radiation-based x-ray photoelectron spectroscopy measurements were conducted in ultra-high vacuum (UHV) and correlated with the catalytic behavior in the liquid phase monitored by photochemical infrared reflection absorption spectroscopy. The differences in their spectral appearance enabled us to unambiguously differentiate the energy-lean and energy-rich isomers and decomposition products. Next to qualitative information on the adsorption motifs, temperature-programmed experiments allowed for the observation of thermally induced reactions and the deduction of the related reaction pathways. We analyzed the selectivity of the cycloreversion reaction from the energy-rich quadricyclane derivative to its energy-lean norbornadiene isomer and competing processes, such as desorption and decomposition. For the 2,3-bis(methylester)-substitution, the cycloreversion reaction was found to occur between 310 and 340 K, while the thermal stability limit of the compounds was determined to be 380 K. The larger 2,3-bis(benzylester) derivatives have a lower apparent adsorption energy and a decomposition onset already at 135 K. In the liquid phase (in acetonitrile), we determined the rate constants for the cycloreversion reaction on Pt(111) to k = 5.3 × 10-4 s-1 for the 2,3-bis(methylester)-substitution and k = 6.3 × 10-4 s-1 for the 2,3-bis(benzylester) derivative. The selectivities were of >99% and 98% for the two molecules, respectively. The difference in the catalytic behavior of Pt(111) for both derivatives is less pronounced in the liquid phase than in UHV, which we attribute to the passivation of the Pt(111) surface by carbonaceous species under ambient conditions.

4.
ACS Appl Mater Interfaces ; 15(15): 19536-19544, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37017296

RESUMO

Solution-based atomic layer deposition (sALD) processes enable the preparation of thin films on nanostructured surfaces while controlling the film thickness down to a monolayer and preserving the homogeneity of the film. In sALD, a similar operation principle as in gas-phase ALD is used, however, with a broader range of accessible materials and without requiring expensive vacuum equipment. In this work, a sALD process was developed to prepare CuSCN on a Si substrate using the precursors CuOAc and LiSCN. The film growth was studied by ex situ atomic force microscopy (AFM), analyzed by a neural network (NN) approach, ellipsometry, and a newly developed in situ infrared (IR) spectroscopy experiment in combination with density functional theory (DFT). In the self-limiting sALD process, CuSCN grows on top of an initially formed two-dimensional (2D) layer as three-dimensional spherical nanoparticles with an average size of ∼25 nm and a narrow particle size distribution. With increasing cycle number, the particle density increases and larger particles form via Ostwald ripening and coalescence. The film grows preferentially in the ß-CuSCN phase. Additionally, a small fraction of the α-CuSCN phase and defect sites form.

5.
J Phys Chem Lett ; 14(6): 1470-1477, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36744855

RESUMO

Molecular solar-thermal (MOST) systems combine solar energy conversion, storage, and release within one single molecule. To release the energy, different approaches are applicable, e.g., the electrochemical and the catalytic pathways. While the electrochemical pathway requires catalytically inert electrode materials, the catalytic pathway requires active and selective catalysts. In this work, we studied the catalytic activity and selectivity of graphite(0001), Pt(111), and Au(111) surfaces for the energy release from the MOST system 3-cyanophenylazothiophene along with its adsorption properties. In our study, we combine in situ photochemical IR spectroscopy and density functional theory (DFT). Graphite(0001) is catalytically inactive, shows the weakest reactant-surface interaction, and therefore is ideally suitable for electrochemical triggering. On Pt(111), we observe strong reactant-surface interactions along with moderate catalytic activity and partial decomposition, which limit the applicability of this material. On Au(111), we observe high catalytic activity and high selectivity (>99%). We assign these catalytic properties to the moderate reactant surface interaction, which prevents decomposition but facilitates energy release via a singlet-triplet mechanism.

6.
ChemSusChem ; 15(24): e202201483, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36213958

RESUMO

Molecular solar thermal (MOST) systems, such as the norbornadiene/quadricyclane (NBD/QC) couple, combine solar energy conversion, storage, and release in a simple one-photon one-molecule process. Triggering the energy release electrochemically enables high control of the process, high selectivity, and reversibility. In this work, the influence of the molecular design of the MOST couple on the electrochemically triggered back-conversion reaction was addressed for the first time. The MOST systems phenyl-ethyl ester-NBD/QC (NBD1/QC1) and p-methoxyphenyl-ethyl ester-NBD/QC (NBD2/QC2) were investigated by in-situ photoelectrochemical infrared spectroscopy, voltammetry, and density functional theory modelling. For QC1, partial decomposition (40 %) was observed upon back-conversion and along with a voltammetric peak at 0.6 Vfc , which was assigned primarily to decomposition. The back-conversion of QC2, however, occurred without detectable side products, and the corresponding peak at 0.45 Vfc was weaker by a factor of 10. It was concluded that the electrochemical stability of a NBD/QC couple is easy tunable by simple structural changes. Furthermore, the charge input and, therefore, the current for the electrochemically triggered energy release is very low, which ensures a high overall efficiency of the MOST system.

7.
ChemSusChem ; 15(18): e202200958, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35762102

RESUMO

Molecular solar thermal (MOST) systems combine solar energy conversion, storage, and release in simple one-photon one-molecule processes. Here, we address the electrochemically triggered energy release from an azothiophene-based MOST system by photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) and density functional theory (DFT). Specifically, the electrochemically triggered back-reaction from the energy rich (Z)-3-cyanophenylazothiophene to its energy lean (E)-isomer using highly oriented pyrolytic graphite (HOPG) as the working electrode was studied. Theory predicts that two reaction channels are accessible, an oxidative one (hole-catalyzed) and a reductive one (electron-catalyzed). Experimentally it was found that the photo-isomer decomposes during hole-catalyzed energy release. Electrochemically triggered back-conversion was possible, however, through the electron-catalyzed reaction channel. The reaction rate could be tuned by the electrode potential within two orders of magnitude. It was shown that the MOST system withstands 100 conversion cycles without detectable decomposition of the photoswitch. After 100 cycles, the photochemical conversion was still quantitative and the electrochemically triggered back-reaction reached 94 % of the original conversion level.

8.
Angew Chem Int Ed Engl ; 61(29): e202202957, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35443095

RESUMO

The "solid catalyst with ionic liquid layer" (SCILL) is an extremely successful new concept in heterogeneous catalysis. The idea is to boost the selectivity of a catalyst by its modification with an ionic liquid (IL). Here, we show that it is possible to use the same concept in electrocatalysis for the selective transformation of organic compounds. We scrutinize the electrooxidation of 2,3-butanediol, a reaction which yields two products, singly oxidized acetoin and doubly oxidized diacetyl. When adding the IL (1-ethyl-3-methyl-imidazolium trifluormethanesulfonate, [C2 C1 Im][OTf]), the selectivity for acetoin increases drastically. By in situ spectroscopy, we analyze the underlying mechanism: Specific adsorption of the IL anions suppresses the activation of water for the second oxidation step and, thus, enhances the selectivity for acetoin. Our study demonstrates the great potential of this approach for selective transformation of organic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA