Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Insects ; 15(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921147

RESUMO

Arizona is home to many mosquito species, some of which are known vectors of infectious diseases that harm both humans and animals. Here, we provide an overview of the 56 mosquito species that have been identified in the State to date, but also discuss their known feeding preference and the diseases they can (potentially) transmit to humans and animals. This list is unlikely to be complete for several reasons: (i) Arizona's mosquitoes are not systematically surveyed in many areas, (ii) surveillance efforts often target specific species of interest, and (iii) doubts have been raised by one or more scientists about the accuracy of some collection records, which has been noted in this article. There needs to be an integrated and multifaceted surveillance approach that involves entomologists and epidemiologists, but also social scientists, wildlife ecologists, ornithologists, representatives from the agricultural department, and irrigation and drainage districts. This will allow public health officials to (i) monitor changes in current mosquito species diversity and abundance, (ii) monitor the introduction of new or invasive species, (iii) identify locations or specific populations that are more at risk for mosquito-borne diseases, and (iv) effectively guide vector control.

2.
Trends Ecol Evol ; 38(12): 1143-1153, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37684131

RESUMO

All aspects of biodiversity research, from taxonomy to conservation, rely on data associated with species names. Effective integration of names across multiple fields is paramount and depends on the coordination and organization of taxonomic data. We assess current efforts and find that even key applications for well-studied taxa still lack commonality in taxonomic information required for integration. We identify essential taxonomic elements from our interoperability assessment to support improved access and integration of taxonomic data. A stronger focus on these elements has the potential to involve taxonomic communities in biodiversity science and overcome broken linkages currently limiting research capacity. We encourage a community effort to democratize taxonomic expertise and language in order to facilitate maximum interoperability and integration.


Assuntos
Biodiversidade , Classificação , Conservação dos Recursos Naturais
3.
Biodivers Data J ; 11: e101960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427371

RESUMO

Background: The State of Arizona in the south-western United States supports a high diversity of insects. Digitised occurrence records, especially from preserved specimens in natural history collections, are an important and growing resource to understand biodiversity and biogeography. Underlying bias in how insects are collected and what that means for interpreting patterns of insect diversity is largely untested. To explore the effects of insect collecting bias in Arizona, the State was regionalised into specific areas. First, the entire State was divided into broad biogeographic areas by ecoregion. Second, the 81 tallest mountain ranges were mapped on to the State. The distribution of digitised records across these areas were then examined.A case study of surveying the beetles (Insecta, Coleoptera) of the Sand Tank Mountains is presented. The Sand Tanks are a low-elevation range in the Lower Colorado River Basin subregion of the Sonoran Desert from which a single beetle record was published before this study. New information: The number of occurrence records and collecting events are very unevenly distributed throughout Arizona and do not strongly correlate with the geographic size of areas. Species richness is estimated for regions in Arizona using rarefaction and extrapolation. Digitised records from the disproportionately highly collected areas in Arizona represent at best 70% the total insect diversity within them. We report a total of 141 species of Coleoptera from the Sand Tank Mountains, based on 914 digitised voucher specimens. These specimens add important new records for taxa that were previously unavailable in digitised data and highlight important biogeographic ranges.Possible underlying mechanisms causing bias are discussed and recommendations are made for future targeted collecting of under-sampled regions. Insect species diversity is apparently at best 70% documented for the State of Arizona with many thousands of species not yet recorded. The Chiricahua Mountains are the most densely sampled region of Arizona and likely contain at least 2,000 species not yet vouchered in online data. Preliminary estimates for species richness of Arizona are at least 21,000 and likely much higher. Limitations to analyses are discussed which highlight the strong need for more insect occurrence data.

4.
Database (Oxford) ; 20232023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37465916

RESUMO

How should billions of species observations worldwide be shared and made reusable? Many biodiversity scientists assume the ideal solution is to standardize all datasets according to a single, universal classification and aggregate them into a centralized, global repository. This ideal has known practical and theoretical limitations, however, which justifies investigating alternatives. To support better community deliberation and normative evaluation, we develop a novel conceptual framework showing how different organizational models, regulative ideals and heuristic strategies are combined to form shared infrastructures supporting data reuse. The framework is anchored in a general definition of data pooling as an activity of making a taxonomically standardized body of information available for community reuse via digital infrastructure. We describe and illustrate unified and pluralistic ideals for biodiversity data pooling and show how communities may advance toward these ideals using different heuristic strategies. We present evidence for the strengths and limitations of the unification and pluralistic ideals based on systemic relationships of power, responsibility and benefit they establish among stakeholders, and we conclude the pluralistic ideal is better suited for biodiversity data.


Assuntos
Biodiversidade , Disseminação de Informação
6.
Lancet Planet Health ; 5(10): e746-e750, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562356

RESUMO

Connecting basic data about bats and other potential hosts of SARS-CoV-2 with their ecological context is crucial to the understanding of the emergence and spread of the virus. However, when lockdowns in many countries started in March, 2020, the world's bat experts were locked out of their research laboratories, which in turn impeded access to large volumes of offline ecological and taxonomic data. Pandemic lockdowns have brought to attention the long-standing problem of so-called biological dark data: data that are published, but disconnected from digital knowledge resources and thus unavailable for high-throughput analysis. Knowledge of host-to-virus ecological interactions will be biased until this challenge is addressed. In this Viewpoint, we outline two viable solutions: first, in the short term, to interconnect published data about host organisms, viruses, and other pathogens; and second, to shift the publishing framework beyond unstructured text (the so-called PDF prison) to labelled networks of digital knowledge. As the indexing system for biodiversity data, biological taxonomy is foundational to both solutions. Building digitally connected knowledge graphs of host-pathogen interactions will establish the agility needed to quickly identify reservoir hosts of novel zoonoses, allow for more robust predictions of emergence, and thereby strengthen human and planetary health systems.


Assuntos
COVID-19 , Interações entre Hospedeiro e Microrganismos , Armazenamento e Recuperação da Informação , Animais , COVID-19/epidemiologia , COVID-19/virologia , Humanos , SARS-CoV-2 , Zoonoses
7.
Acta Biomater ; 126: 350-371, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33753315

RESUMO

With over 300 species worldwide, the genus Curculio Linnaeus, 1758 is a widespread, morphologically diverse lineage of weevils that mainly parasitize nuts. Females use the rostrum, an elongate cuticular extension of the head, to excavate oviposition sites. This process causes extreme bending and deformation of the rostrum, without apparent harm to the structure. The cuticle of the rostral apex exhibits substantial modifications to its composite structure that enhance the elasticity and resiliency of this structure. Here we develop finite element models of the head and rostrum for three Curculio species representing disparate North American clades and rostral morphotypes. The models were subjected to varying apical loads and to prescribed dislocation of the head capsule, with and without representing the cuticular modifications of the rostral apex. We found that the altered layer thicknesses and macrofiber orientation angles of the rostral apex fully explain the observed elasticity of the rostrum. These modifications have a synergistic effect that greatly enhances the flexibility of the rostral apex. Consequently, the cuticle composite profile of the rostral apex substantially mitigates the risk of fracture in dorso-apical flexion. Removing the cuticular modifications, in turn, causes a negative margin of safety for rostral bending, implying strong risk of catastrophic structural failure. The occipital sulci were identified as an important source of biomechanical constraint upon the elasticity of the rostrum, and exhibit the greatest risk of failure within this structure. The apical cuticle profile greatly reduced the maximum stresses and strain energy accumulated in the rostrum, thereby resulting in a positive margin of safety and reducing the risk of fracture. Our findings imply that the primary selective pressure influencing the evolution of the rostral cuticle was most likely negative selection of structural failure caused by bending. STATEMENT OF SIGNIFICANCE: Weevils are among the most diverse and evolutionarily successful animal lineages on Earth. Their success is driven in part by a structure called the rostrum, which gives weevil heads a characteristic "snout-like" appearance. Nut weevils in the genus Curculio use the rostrum to drill holes into developing fruits and nuts, into which they deposit their eggs. During oviposition this exceedingly slender structure is bent into a straightened configuration - in some species up to 90∘ - but does not suffer any damage during this process. Using finite element models of the rostra of three morphologically distinct species, we show that the Curculio rostrum is only able to withstand repeated, extreme bending because of modifications to the composite structure of the cuticle in the rostral apex. These modifications were shown previously to enhance the intrinsic toughness of the cuticle; in this study, we demonstrate that modification of the rostral cuticle also results in more evenly distributed bending stresses, further reducing the risk of fracture. This is the first time that the laminate profile, orthotropic behavior, and functional gradation of the cuticle have been incorporated into a three-dimensional finite element model of an insect cuticular structure. Our models highlight the significance of biomechanical constraint - i.e., avoidance of catastrophic structural failure - on the evolution of insect morphology.


Assuntos
Gorgulhos , Animais , Feminino
8.
Hist Philos Life Sci ; 43(1): 7, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33439354

RESUMO

What should the best practices be for modeling zoonotic disease risks, e.g. to anticipate the next pandemic, when background assumptions are unsettled or evolving rapidly? This challenge runs deeper than one might expect, all the way into how we model the robustness of contemporary phylogenetic inference and taxonomic classifications. Different and legitimate taxonomic assumptions can destabilize the putative objectivity of zoonotic risk assessments, thus potentially supporting inconsistent and overconfident policy decisions.


Assuntos
Quirópteros , Pandemias , Medição de Risco/métodos , Zoonoses , Animais , Quirópteros/virologia , Humanos , Modelos Teóricos , Pandemias/classificação , Filogenia , Zoonoses/epidemiologia , Zoonoses/transmissão , Zoonoses/virologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-35462676

RESUMO

Making the most of biodiversity data requires linking observations of biological species from multiple sources both efficiently and accurately (Bisby 2000, Franz et al. 2016). Aggregating occurrence records using taxonomic names and synonyms is computationally efficient but known to experience significant limitations on accuracy when the assumption of one-to-one relationships between names and biological entities breaks down (Remsen 2016, Franz and Sterner 2018). Taxonomic treatments and checklists provide authoritative information about the correct usage of names for species, including operational representations of the meanings of those names in the form of range maps, reference genetic sequences, or diagnostic traits. They increasingly provide taxonomic intelligence in the form of precise description of the semantic relationships between different published names in the literature. Making this authoritative information Findable, Accessible, Interoperable, and Reusable (FAIR; Wilkinson et al. 2016) would be a transformative advance for biodiversity data sharing and help drive adoption and novel extensions of existing standards such as the Taxonomic Concept Schema and the OpenBiodiv Ontology (Kennedy et al. 2006, Senderov et al. 2018). We call for the greater, global Biodiversity Information Standards (TDWG) and taxonomy community to commit to extending and expanding on how FAIR applies to biodiversity data and include practical targets and criteria for the publication and digitization of taxonomic concept representations and alignments in taxonomic treatments, checklists, and backbones.

10.
Hist Philos Life Sci ; 42(1): 8, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32030540

RESUMO

The collection and classification of data into meaningful categories is a key step in the process of knowledge making. In the life sciences, the design of data discovery and integration tools has relied on the premise that a formal classificatory system for expressing a body of data should be grounded in consensus definitions for classifications. On this approach, exemplified by the realist program of the Open Biomedical Ontologies Foundry, progress is maximized by grounding the representation and aggregation of data on settled knowledge. We argue that historical practices in systematic biology provide an important and overlooked alternative approach to classifying and disseminating data, based on a principle of coordinative rather than definitional consensus. Systematists have developed a robust system for referring to taxonomic entities that can deliver high quality data discovery and integration without invoking consensus about reality or "settled" science.


Assuntos
Consenso , Dissidências e Disputas , Ontologias Biológicas
11.
Front Big Data ; 3: 519133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33693407

RESUMO

Centralized biodiversity data aggregation is too often failing societal needs due to pervasive and systemic data quality deficiencies. We argue for a novel approach that embodies the spirit of the Web ("small pieces loosely joined") through the decentralized coordination of data across scientific languages and communities. The upfront cost of decentralization can be offset by the long-term benefit of achieving sustained expert engagement, higher-quality data products, and ultimately more societal impact for biodiversity data. Our decentralized approach encourages the emergence and evolution of multiple self-identifying communities of practice that are regionally, taxonomically, or institutionally localized. Each community is empowered to control the social and informational design and versioning of their local data infrastructures and signals. With no single aggregator to exert centralized control over biodiversity data, decentralization generates loosely connected networks of mid-level aggregators. Global coordination is nevertheless feasible through automatable data sharing agreements that enable efficient propagation and translation of biodiversity data across communities. The decentralized model also poses novel integration challenges, among which the explicit and continuous articulation of conflicting systematic classifications and phylogenies remain the most challenging. We discuss the development of available solutions, challenges, and outline next steps: the global effort of coordination should focus on developing shared languages for data signal translation, as opposed to homogenizing the data signal itself.

12.
Adv Mater ; 31(41): e1903526, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31456275

RESUMO

The acorn weevil (Curculio Linnaeus, 1758) rostrum (snout) exhibits remarkable flexibility and toughness derived from the microarchitecture of its exoskeleton. Modifications to the composite profile of the rostral cuticle that simultaneously enhance the flexibility and toughness of the distal portion of the snout are characterized. Using classical laminate plate theory, the effect of these modifications on the elastic behavior of the exoskeleton is estimated. It is shown that the tensile behavior of the rostrum across six Curculio species with high morphological variation correlates with changes in the relative layer thicknesses and orientation angles of layers in the exoskeleton. Accordingly, increased endocuticle thickness is strongly correlated with increased tensile strength. Rostrum stiffness is shown to be inversely correlated with work of fracture; thus allowing a highly curved rostrum to completely straighten without structural damage. Finally, exocuticle rich invaginations of the occipital sutures are identified both as a likely site of crack initiation in tensile failure and as a source of morphological constraint on the evolution of the rostrum in Curculio weevils. It is concluded that avoidance of catastrophic structural failure, as initiated in these sutures under tension, is the driving selective pressure in the evolution of the female Curculio rostrum.


Assuntos
Evolução Biológica , Fenômenos Mecânicos , Gorgulhos/anatomia & histologia , Gorgulhos/fisiologia , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Feminino , Resistência à Tração
13.
PLoS Comput Biol ; 15(2): e1006493, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30768597

RESUMO

Phylogenomic research is accelerating the publication of landmark studies that aim to resolve deep divergences of major organismal groups. Meanwhile, systems for identifying and integrating the products of phylogenomic inference-such as newly supported clade concepts-have not kept pace. However, the ability to verbalize node concept congruence and conflict across multiple, in effect simultaneously endorsed phylogenomic hypotheses, is a prerequisite for building synthetic data environments for biological systematics and other domains impacted by these conflicting inferences. Here we develop a novel solution to the conflict verbalization challenge, based on a logic representation and reasoning approach that utilizes the language of Region Connection Calculus (RCC-5) to produce consistent alignments of node concepts endorsed by incongruent phylogenomic studies. The approach employs clade concept labels to individuate concepts used by each source, even if these carry identical names. Indirect RCC-5 modeling of intensional (property-based) node concept definitions, facilitated by the local relaxation of coverage constraints, allows parent concepts to attain congruence in spite of their differentially sampled children. To demonstrate the feasibility of this approach, we align two recent phylogenomic reconstructions of higher-level avian groups that entail strong conflict in the "neoavian explosion" region. According to our representations, this conflict is constituted by 26 instances of input "whole concept" overlap. These instances are further resolvable in the output labeling schemes and visualizations as "split concepts", which provide the labels and relations needed to build truly synthetic phylogenomic data environments. Because the RCC-5 alignments fundamentally reflect the trained, logic-enabled judgments of systematic experts, future designs for such environments need to promote a culture where experts routinely assess the intensionalities of node concepts published by our peers-even and especially when we are not in agreement with each other.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Filogenia , Animais , Aves/genética , Simulação por Computador , Humanos , Idioma
14.
PeerJ ; 6: e5633, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356935

RESUMO

This contribution adopts the taxonomic concept approach, including the use of taxonomic concept labels (name sec. [according to] source) and region connection calculus-5 (RCC-5) articulations and alignments. Prior to this study, the broad-nosed weevil genus Minyomerus Horn, 1876 sec. Jansen & Franz, 2015 (Curculionidae [non-focal]: Entiminae [non-focal]: Tanymecini [non-focal]) contained 17 species distributed throughout the desert and plains regions of North America. In this review of Minyomerus sec. Jansen & Franz, 2018, we describe the following four species as new to science: Minyomerus ampullaceus sec. Jansen & Franz, 2018 (henceforth: [JF2018]), new species, Minyomerus franko [JF2018], new species, Minyomerus sculptilis [JF2018], new species, and Minyomerus tylotos [JF2018], new species. The four new species are added to, and integrated with, the preceding revision, and an updated key and phylogeny of Minyomerus [JF2018] are presented. A cladistic analysis using 52 morphological characters of 26 terminal taxa (5/21 outgroup/ingroup) yielded a single most-parsimonious cladogram (Length = 99 steps, consistency index = 60, retention index = 80). The analysis reaffirms the monophyly of Minyomerus [JF2018] with eight unreversed synapomorphies. The species-group placements, possible biogeographic origins, and natural history of the new species are discussed in detail.

15.
Biodivers Data J ; (6): e24927, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942173

RESUMO

Generating regional checklists for insects is frequently based on combining data sources ranging from literature and expert assertions that merely imply the existence of an occurrence to aggregated, standard-compliant data of uniquely identified specimens. The increasing diversity of data sources also means that checklist authors are faced with new responsibilities, effectively acting as filterers to select and utilize an expert-validated subset of all available data. Authors are also faced with the technical obstacle to bring more occurrences into Darwin Core-based data aggregation, even if the corresponding specimens belong to external institutions. We illustrate these issues based on a partial update of the Kimsey et al. 2017 checklist of darkling beetles - Tenebrionidae sec. Bousquet et al. 2018 - inhabiting the Algodones Dunes of California. Our update entails 54 species-level concepts for this group and region, of which 31 concepts were found to be represented in three specimen-data aggregator portals, based on our interpretations of the aggregators' data. We reassess the distributions and biogeographic affinities of these species, focusing on taxa that are precinctive (highly geographically restricted) to the Lower Colorado River Valley in the context of recent dune formation from the Colorado River. Throughout, we apply taxonomic concept labels (taxonomic name according to source) to contextualize preferred name usages, but also show that the identification data of aggregated occurrences are very rarely well-contextualized or annotated. Doing so is a pre-requisite for publishing open, dynamic checklist versions that finely accredit incremental expert efforts spent to improve the quality of checklists and aggregated occurrence data.

16.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315357

RESUMO

Growing concerns about the quality of aggregated biodiversity data are lowering trust in large-scale data networks. Aggregators frequently respond to quality concerns by recommending that biologists work with original data providers to correct errors 'at the source.' We show that this strategy falls systematically short of a full diagnosis of the underlying causes of distrust. In particular, trust in an aggregator is not just a feature of the data signal quality provided by the sources to the aggregator, but also a consequence of the social design of the aggregation process and the resulting power balance between individual data contributors and aggregators. The latter have created an accountability gap by downplaying the authorship and significance of the taxonomic hierarchies-frequently called 'backbones'-they generate, and which are in effect novel classification theories that operate at the core of data-structuring process. The Darwin Core standard for sharing occurrence records plays an under-appreciated role in maintaining the accountability gap, because this standard lacks the syntactic structure needed to preserve the taxonomic coherence of data packages submitted for aggregation, potentially leading to inferences that no individual source would support. Since high-quality data packages can mirror competing and conflicting classifications, i.e. unsettled systematic research, this plurality must be accommodated in the design of biodiversity data integration. Looking forward, a key directive is to develop new technical pathways and social incentives for experts to contribute directly to the validation of taxonomically coherent data packages as part of a greater, trustworthy aggregation process.


Assuntos
Biodiversidade , Confiabilidade dos Dados , Bases de Dados Factuais , Disseminação de Informação
17.
J Biomed Semantics ; 9(1): 5, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29347997

RESUMO

BACKGROUND: The biodiversity domain, and in particular biological taxonomy, is moving in the direction of semantization of its research outputs. The present work introduces OpenBiodiv-O, the ontology that serves as the basis of the OpenBiodiv Knowledge Management System. Our intent is to provide an ontology that fills the gaps between ontologies for biodiversity resources, such as DarwinCore-based ontologies, and semantic publishing ontologies, such as the SPAR Ontologies. We bridge this gap by providing an ontology focusing on biological taxonomy. RESULTS: OpenBiodiv-O introduces classes, properties, and axioms in the domains of scholarly biodiversity publishing and biological taxonomy and aligns them with several important domain ontologies (FaBiO, DoCO, DwC, Darwin-SW, NOMEN, ENVO). By doing so, it bridges the ontological gap across scholarly biodiversity publishing and biological taxonomy and allows for the creation of a Linked Open Dataset (LOD) of biodiversity information (a biodiversity knowledge graph) and enables the creation of the OpenBiodiv Knowledge Management System. A key feature of the ontology is that it is an ontology of the scientific process of biological taxonomy and not of any particular state of knowledge. This feature allows it to express a multiplicity of scientific opinions. The resulting OpenBiodiv knowledge system may gain a high level of trust in the scientific community as it does not force a scientific opinion on its users (e.g. practicing taxonomists, library researchers, etc.), but rather provides the tools for experts to encode different views as science progresses. CONCLUSIONS: OpenBiodiv-O provides a conceptual model of the structure of a biodiversity publication and the development of related taxonomic concepts. It also serves as the basis for the OpenBiodiv Knowledge Management System.


Assuntos
Ontologias Biológicas , Biodiversidade , Classificação , Semântica
18.
Cladistics ; 34(3): 336-357, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34645079

RESUMO

We utilize an Answer Set Programming (ASP) approach to show that the principles of nomenclature are tractable in computational logic. To this end we design a hypothetical, 20 nomenclatural taxon use case, with starting conditions that embody several overarching principles of the International Code of Zoological Nomenclature, including Binomial Nomenclature, Priority, Coordination, Homonymy, Typification and the structural requirement of Gender Agreement. The use case ending conditions are triggered by the reinterpretation of the diagnostic features of one of 12 type specimens anchoring the corresponding species-level epithets. Permutations of this child-to-parent reassignment action lead to 36 alternative scenarios, where each scenario requires a set of 1-14 logically contingent nomenclatural emendations. We show that an ASP transition system approach can correctly infer the Code-mandated changes for each scenario, and visually output the ending conditions. The results provide a foundation for further developing logic-based nomenclatural change optimization and validation services, which could be applied in global nomenclatural registries. More generally, logic explorations of nomenclatural and taxonomic change scenarios provide a novel means of assessing design biases inherent in the principles of nomenclature, and can therefore inform the design of future, big data-compatible identifier systems that recognize and mitigate these constraints.

19.
Zootaxa ; 4247(1): 73-77, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28610091

RESUMO

The Lepidoptera of North America Network, or LepNet, is a digitization effort recently launched to mobilize biodiversity data from 3 million specimens of butterflies and moths in United States natural history collections (http://www.lep-net.org/). LepNet was initially conceived as a North American effort but the project seeks collaborations with museums and other organizations worldwide. The overall goal is to transform Lepidoptera specimen data into readily available digital formats to foster global research in taxonomy, ecology and evolutionary biology.


Assuntos
Lepidópteros , Animais , Biodiversidade , Borboletas , Museus , América do Norte , Estados Unidos
20.
Biodivers Data J ; (5): e10469, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28325975

RESUMO

BACKGROUND: Using syntactic and semantic conventions of the taxonomic concept approach (Franz et al. 2015), we describe three newly recognized fossil broad-nosed weevils (Coleoptera: Curculionidae: Entiminae) preserved in Early Miocene amber (ca. 20.4-16.0 mya) from the Dominican Republic: Scelianoma compactasp. n. sec. Franz & Zhang (2017) (henceforth abbreviated as [FZ2017]), Tropirhinus palpebratussp. n. [FZ2017], and Diaprepes anticussp. n. [FZ2017]. The taxonomic assignment of the amber inclusions is grounded in a preceding phylogenetic analysis by Franz (2012). As many as 88 of the 143 therein identified characters were coded for the fossils, whose traits are largely congruent with those present in extant congeners while also differing in ways that justify their new nomenclatural and taxonomic status. NEW INFORMATION: We present detailed images, descriptions, and phylogenetically informed diagnoses for the three new species-level entities, along with logically consistent Region Connection Calculus (RCC-5) alignments of the amended genus-level classifications for Scelianoma Franz and Girón 2009 [FZ2017], Tropirhinus Schoenherr 1823 [FZ2017], and Diaprepes Schoenherr 1823 [FZ2017] - in relation to 2-4 preceding classifications published in 1982-2012. The description of Scelianoma compacta [FZ2017] from Hispaniola is indicative of a more widespread historical range of Scelianoma [FZ2017] than reflected in the extant, southwestern Puerto Rican Scelianoma elydimorpha Franz and Girón 2009 sec. Franz and Girón (2009). The presence of Diaprepes anticus [FZ2017] in Hispaniola during the Early Miocene suggests an eastward directed process of island colonization and likely speciation of members of Diaprepes [FZ2017], given that most extant relatives occur throughout the Lesser Antilles. The herein presented data will facilitate more reliable reconstructions of historical biographic processes thought to have played a prominent role in the diversification of the West Indian and Neotropical mainland broad-nosed weevil lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA