Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neuropathol Appl Neurobiol ; 49(4): e12915, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37296499

RESUMO

AIMS: Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder caused by hypomorphic mutations of NBS1. NBS1 is a member of the MRE11-RAD50-NBS1 (MRN) complex that binds to DNA double-strand breaks and activates the DNA damage response (DDR). Nbs1 inactivation in neural progenitor cells leads to microcephaly and premature death. Interestingly, p53 homozygous deletion rescues the NBS1-deficient phenotype allowing long-term survival. The objective of this work was to determine whether simultaneous inactivation of Nbs1 and p53 in neural progenitors triggered brain tumorigenesis and if so in which category this tumour could be classified. METHODS: We generated a mouse model with simultaneous genetic inactivation of Nbs1 and p53 in embryonic neural stem cells and analysed the arising tumours with in-depth molecular analyses including immunohistochemistry, array comparative genomic hybridisation (aCGH), whole exome-sequencing and RNA-sequencing. RESULTS: NBS1/P53-deficient mice develop high-grade gliomas (HGG) arising in the olfactory bulbs and in the cortex along the rostral migratory stream. In-depth molecular analyses using immunohistochemistry, aCGH, whole exome-sequencing and RNA-sequencing revealed striking similarities to paediatric human HGG with shared features with radiation-induced gliomas (RIGs). CONCLUSIONS: Our findings show that concomitant inactivation of Nbs1 and p53 in mice promotes HGG with RIG features. This model could be useful for preclinical studies to improve the prognosis of these deadly tumours, but it also highlights the singularity of NBS1 among the other DNA damage response proteins in the aetiology of brain tumours.


Assuntos
Glioma , Proteína Supressora de Tumor p53 , Animais , Criança , Humanos , Camundongos , Proteínas de Ciclo Celular/genética , Glioma/genética , Homozigoto , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Deleção de Sequência , Proteína Supressora de Tumor p53/genética
2.
Cancers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201898

RESUMO

To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the "stemness" maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patients.

3.
Cancer Res ; 81(7): 1758-1774, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33531371

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) still presents with a dismal prognosis despite intense research. Better understanding of cellular homeostasis could identify druggable targets to improve therapy. Here we propose RAD50-interacting protein 1 (RINT1) as an essential mediator of cellular homeostasis in PDAC. In a cohort of resected PDAC, low RINT1 protein expression correlated significantly with better survival. Accordingly, RINT1 depletion caused severe growth defects in vitro associated with accumulation of DNA double-strand breaks (DSB), G2 cell cycle arrest, disruption of Golgi-endoplasmic reticulum homeostasis, and cell death. Time-resolved transcriptomics corroborated by quantitative proteome and interactome analyses pointed toward defective SUMOylation after RINT1 loss, impairing nucleocytoplasmic transport and DSB response. Subcutaneous xenografts confirmed tumor response by RINT1 depletion, also resulting in a survival benefit when transferred to an orthotopic model. Primary human PDAC organoids licensed RINT1 relevance for cell viability. Taken together, our data indicate that RINT1 loss affects PDAC cell fate by disturbing SUMOylation pathways. Therefore, a RINT1 interference strategy may represent a new putative therapeutic approach. SIGNIFICANCE: These findings provide new insights into the aggressive behavior of PDAC, showing that RINT1 directly correlates with survival in patients with PDAC by disturbing the SUMOylation process, a crucial modification in carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular/fisiologia , Reparo do DNA/genética , Neoplasias Pancreáticas , Sumoilação , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Dano ao DNA/genética , Feminino , Homeostase/genética , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Processamento de Proteína Pós-Traducional/genética , Sumoilação/genética
4.
Gut ; 70(4): 743-760, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32873698

RESUMO

OBJECTIVE: ATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC). DESIGN: Combinational synergy screening was performed to endeavour a genotype-tailored targeted therapy. RESULTS: Synergy was found on inhibition of PARP, ATR and DNA-PKcs (PAD) leading to synthetic lethality in ATM-deficient murine and human PDAC. Mechanistically, PAD-induced PARP trapping, replication fork stalling and mitosis defects leading to P53-mediated apoptosis. Most importantly, chemical inhibition of ATM sensitises human PDAC cells toward PAD with long-term tumour control in vivo. Finally, we anticipated and elucidated PARP inhibitor resistance within the ATM-null background via whole exome sequencing. Arising cells were aneuploid, underwent epithelial-mesenchymal-transition and acquired multidrug resistance (MDR) due to upregulation of drug transporters and a bypass within the DNA repair machinery. These functional observations were mirrored in copy number variations affecting a region on chromosome 5 comprising several of the upregulated MDR genes. Using these findings, we ultimately propose alternative strategies to overcome the resistance. CONCLUSION: Analysis of the molecular susceptibilities triggered by ATM deficiency in PDAC allow elaboration of an efficient mutation-specific combinational therapeutic approach that can be also implemented in a genotype-independent manner by ATM inhibition.


Assuntos
Adenocarcinoma/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma Ductal Pancreático/genética , Recombinação Homóloga , Neoplasias Pancreáticas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Adenocarcinoma/tratamento farmacológico , Animais , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular , Variações do Número de Cópias de DNA , Dano ao DNA , Reparo do DNA , Resistência a Múltiplos Medicamentos/genética , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal , Genótipo , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Prognóstico
6.
Cell Death Dis ; 11(10): 923, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33110058

RESUMO

The maintenance of genomic stability during the cell cycle of progenitor cells is essential for the faithful transmission of genetic information. Mutations in genes that ensure genome stability lead to human developmental syndromes. Mutations in Ataxia Telangiectasia and Rad3-related (ATR) or in ATR-interacting protein (ATRIP) lead to Seckel syndrome, which is characterized by developmental malformations and short life expectancy. While the roles of ATR in replicative stress response and chromosomal segregation are well established, it is unknown how ATRIP contributes to maintaining genomic stability in progenitor cells in vivo. Here, we generated the first mouse model to investigate ATRIP function. Conditional inactivation of Atrip in progenitor cells of the CNS and eye led to microcephaly, microphthalmia and postnatal lethality. To understand the mechanisms underlying these malformations, we used lens progenitor cells as a model and found that ATRIP loss promotes replicative stress and TP53-dependent cell death. Trp53 inactivation in Atrip-deficient progenitor cells rescued apoptosis, but increased mitotic DNA damage and mitotic defects. Our findings demonstrate an essential role of ATRIP in preventing DNA damage accumulation during unchallenged replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Células-Tronco/metabolismo , Animais , Proliferação de Células , Humanos , Camundongos
7.
Dis Model Mech ; 13(10)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32994318

RESUMO

Seckel syndrome is a type of microcephalic primordial dwarfism (MPD) that is characterized by growth retardation and neurodevelopmental defects, including reports of retinopathy. Mutations in key mediators of the replication stress response, the mutually dependent partners ATR and ATRIP, are among the known causes of Seckel syndrome. However, it remains unclear how their deficiency disrupts the development and function of the central nervous system (CNS). Here, we investigated the cellular and molecular consequences of ATRIP deficiency in different cell populations of the developing murine neural retina. We discovered that conditional inactivation of Atrip in photoreceptor neurons did not affect their survival or function. In contrast, Atrip deficiency in retinal progenitor cells (RPCs) led to severe lamination defects followed by secondary photoreceptor degeneration and loss of vision. Furthermore, we showed that RPCs lacking functional ATRIP exhibited higher levels of replicative stress and accumulated endogenous DNA damage that was accompanied by stabilization of TRP53. Notably, inactivation of Trp53 prevented apoptosis of Atrip-deficient progenitor cells and was sufficient to rescue retinal dysplasia, neurodegeneration and loss of vision. Together, these results reveal an essential role of ATRIP-mediated replication stress response in CNS development and suggest that the TRP53-mediated apoptosis of progenitor cells might contribute to retinal malformations in Seckel syndrome and other MPD disorders.This article has an associated First Person interview with the first author of the paper.


Assuntos
Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Neural/patologia , Displasia Retiniana/patologia , Células-Tronco/patologia , Animais , Apoptose , Cegueira/patologia , Morte Celular , Proliferação de Células , Dano ao DNA , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Camundongos , Degeneração Neural/complicações , Neurogênese , Células Fotorreceptoras de Vertebrados/patologia , Retina/patologia , Displasia Retiniana/complicações , Síndrome , Proteína Supressora de Tumor p53/metabolismo , Visão Ocular
8.
Cancers (Basel) ; 12(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987786

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents 90% of pancreatic malignancies. In contrast to many other tumor entities, the prognosis of PDAC has not significantly improved during the past thirty years. Patients are often diagnosed too late, leading to an overall five-year survival rate below 10%. More dramatically, PDAC cases are on the rise and it is expected to become the second leading cause of death by cancer in western countries by 2030. Currently, the use of gemcitabine/nab-paclitaxel or FOLFIRINOX remains the standard chemotherapy treatment but still with limited efficiency. There is an urgent need for the development of early diagnostic and therapeutic tools. To this point, in the past 5 years, organoid technology has emerged as a revolution in the field of PDAC personalized medicine. Here, we are reviewing and discussing the current technical and scientific knowledge on PDAC organoids, their future perspectives, and how they can represent a game change in the fight against PDAC by improving both diagnosis and treatment options.

9.
Front Cell Dev Biol ; 8: 711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850831

RESUMO

Genomic instability in the central nervous system (CNS) is associated with defective neurodevelopment and neurodegeneration. Congenital human syndromes that affect the CNS development originate from mutations in genes of the DNA damage response (DDR) pathways. RINT1 (Rad50-interacting protein 1) is a partner of RAD50, that participates in the cellular responses to DNA double-strand breaks (DSB). Recently, we showed that Rint1 regulates cell survival in the developing brain and its loss led to premature lethality associated with genomic stability. To bypass the lethality of Rint1 inactivation in the embryonic brain and better understand the roles of RINT1 in CNS development, we conditionally inactivated Rint1 in retinal progenitor cells (RPCs) during embryogenesis. Rint1 loss led to accumulation of endogenous DNA damage, but RINT1 was not necessary for the cell cycle checkpoint activation in these neural progenitor cells. As a consequence, proliferating progenitors and postmitotic neurons underwent apoptosis causing defective neurogenesis of retinal ganglion cells, malformation of the optic nerve and blindness. Notably, inactivation of Trp53 prevented apoptosis of the RPCs and rescued the generation of retinal neurons and vision loss. Together, these results revealed an essential role for TRP53-mediated apoptosis in the malformations of the visual system caused by RINT1 loss and suggests that defective responses to DNA damage drive retinal malformations.

10.
United European Gastroenterol J ; 8(5): 594-606, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213029

RESUMO

BACKGROUND: Organotypic cultures derived from pancreatic ductal adenocarcinoma (PDAC) termed pancreatic ductal cancer organoids (PDOs) recapitulate the primary cancer and can be derived from primary or metastatic biopsies. Although isolation and culture of patient-derived pancreatic organoids were established several years ago, pros and cons for individualized medicine have not been comprehensively investigated to date. METHODS: We conducted a feasibility study, systematically comparing head-to-head patient-derived xenograft tumor (PDX) and PDX-derived organoids by rigorous immunohistochemical and molecular characterization. Subsequently, a drug testing platform was set up and validated in vivo. Patient-derived organoids were investigated as well. RESULTS: First, PDOs faithfully recapitulated the morphology and marker protein expression patterns of the PDXs. Second, quantitative proteomes from the PDX as well as from corresponding organoid cultures showed high concordance. Third, genomic alterations, as assessed by array-based comparative genomic hybridization, revealed similar results in both groups. Fourth, we established a small-scale pharmacotyping platform adjusted to operate in parallel considering potential obstacles such as culture conditions, timing, drug dosing, and interpretation of the results. In vitro predictions were successfully validated in an in vivo xenograft trial. Translational proof-of-concept is exemplified in a patient with PDAC receiving palliative chemotherapy. CONCLUSION: Small-scale drug screening in organoids appears to be a feasible, robust and easy-to-handle disease modeling method to allow response predictions in parallel to daily clinical routine. Therefore, our fast and cost-efficient assay is a reasonable approach in a predictive clinical setting.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Organoides/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Adulto , Animais , Antineoplásicos/uso terapêutico , Biópsia , Carcinoma Ductal Pancreático/patologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Camundongos , Organoides/patologia , Pâncreas/citologia , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Estudo de Prova de Conceito , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Stem Cells Int ; 2019: 2079742, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236113

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is still the Achilles heel in modern oncology, with an increasing incidence accompanied by a persisting high mortality. The developmental process of PDAC is thought to be stepwise via precursor lesions and sequential accumulation of mutations. Thereby, current sequencing studies recapitulate this genetic heterogeneity in PDAC and show besides a handful of driver mutations (KRAS, TP53) a plethora of passenger mutations that allow to define subtypes. However, modeling the mutations of interest and their effects is still challenging. Interestingly, organoids have the potential to recapitulate in vitro, the in vivo characteristics of the tissue they originate from. Here, we could establish and develop tools allowing us to isolate, culture, and genetically modify ductal mouse organoids. Transferred to known effectors in the IPMN-PDAC sequence, we could reveal significantly increased proliferative and self-renewal capacities for PTEN and RNF43 deficiency in the context of oncogenic KRASG12D in mouse pancreatic organoids. Overall, we were able to obtain promising data centering ductal organoids in the focus of future PDAC research.

12.
Stem Cells Int ; 2019: 9301382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930950

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their unique capacity to stepwise differentiate towards any particular cell type in an adult organism. Pluripotent stem cells provide a beneficial platform to model hereditary diseases and even cancer development. While the incidence of pancreatic diseases such as diabetes and pancreatitis is increasing, the understanding of the underlying pathogenesis of particular diseases remains limited. Only a few recent publications have contributed to the characterization of human pancreatic development in the fetal stage. Hence, most knowledge of pancreatic specification is based on murine embryology. Optimizing and understanding current in vitro protocols for pancreatic differentiation of ESCs and iPSCs constitutes a prerequisite to generate functional pancreatic cells for better disease modeling and drug discovery. Moreover, human pancreatic organoids derived from pluripotent stem cells, organ-restricted stem cells, and tumor samples provide a powerful technology to model carcinogenesis and hereditary diseases independent of genetically engineered mouse models. Herein, we summarize recent advances in directed differentiation of pancreatic organoids comprising endocrine cell types. Beyond that, we illustrate up-and-coming applications for organoid-based platforms.

13.
Per Med ; 15(6): 461-465, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30418092

RESUMO

The establishment of organoid culture systems represents a milestone on the route toward successful personalized medicine. This mini review provides an update on the current status of organoid technology and summarizes their applications in personalized medicine. Organoids can be defined as 3D structures derived either from pluripotent or organ restricted stem cells harboring the ability to mimic in vivo architecture and multi lineage differentiation of terminally differentiated tissues. Due to their unique ability of virtually unlimited self-renewal, organoid cultures should be distinguished from previous 'sphere'-culture assays, for example, 'tumor spheres' that have already been described and applied over the last decades.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/fisiologia , Medicina de Precisão/métodos , Bioensaio , Materiais Biomiméticos/metabolismo , Biomimética/métodos , Diferenciação Celular , Humanos , Modelos Biológicos , Neoplasias/fisiopatologia , Organoides/metabolismo , Células-Tronco , Tecnologia
15.
Cancer Res ; 77(20): 5576-5590, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28790064

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATM deficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. Cancer Res; 77(20); 5576-90. ©2017 AACR.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/enzimologia , Dano ao DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/enzimologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Fluoruracila/farmacologia , Expressão Gênica , Instabilidade Genômica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Gencitabina
16.
Autophagy ; 12(8): 1413-5, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27367497

RESUMO

RINT1 was first identified as an RAD50-interacting protein and its function was therefore linked to the maintenance of genomic stability. It was also shown that RINT1 was a key player in ER-Golgi trafficking as a member of an ER tethering complex interacting with STX18. However, due to early embryonic lethality of rint1-null mice, the in vivo functions of RINT1 remained for the most part elusive. We recently described the consequences of Rint1 inactivation in various neuronal cells of the central nervous system. We observed that lack of RINT1 in vivo triggers genomic instability and ER stress leading to depletion of the neural progenitor pool and neurodegeneration. Surprisingly, we also observed inhibition of autophagy in RINT1-deficient neurons, indicating an involvement of RINT1 in the regulation of neuronal autophagy. Here, we summarize our main RINT1 findings and discuss its putative roles in autophagy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Hidrolases Anidrido Ácido , Animais , Autofagia , Morte Celular , Proteínas de Ligação a DNA , Complexo Dinactina/química , Dineínas/química , Instabilidade Genômica , Genômica , Homeostase , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Transporte Proteico , Células-Tronco/citologia , Proteínas Supressoras de Tumor/genética , Proteínas de Transporte Vesicular/genética
17.
Oncotarget ; 7(17): 23006-18, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27050272

RESUMO

Nijmegen Breakage Syndrome is a disease caused by NBN mutations. Here, we report a novel function of Nbn in skin homeostasis. We found that Nbn deficiency in hair follicle (HF) progenitors promoted increased DNA damage signaling, stimulating p16Ink4a up-regulation, Trp53 stabilization and cytokines secretion leading to HF-growth arrest and hair loss. At later stages, the basal keratinocytes layer exhibited also enhanced DNA damage response but in contrast to the one in HF progenitor was not associated with pro-inflammatory cytokines expression, but rather increased proliferation, lack of differentiation and immune response resembling psoriasiform dermatitis. Simultaneous Nbn and Trp53 inactivation significantly exacerbated this phenotype, due to the lack of inhibition of pro-inflammatory cytokines secretion by Trp53. Altogether, we demonstrated novel functions of Nbn in HF maintenance and prevention of skin inflammation and we provide a mechanistic explanation that links cell intrinsic DNA maintenance with large scale morphological tissue alterations.


Assuntos
Alopecia/etiologia , Proteínas de Ciclo Celular/fisiologia , Dermatite/patologia , Epiderme/patologia , Proteínas Nucleares/fisiologia , Psoríase/patologia , Proteína Supressora de Tumor p53/fisiologia , Alopecia/patologia , Animais , Proteínas de Ligação a DNA , Dermatite/metabolismo , Epiderme/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Psoríase/metabolismo
18.
Acta Neuropathol ; 127(4): 565-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464231

RESUMO

Malignant peripheral nerve sheath tumors (MPNST) derive from the Schwann cell or perineurial cell lineage and occur either sporadically or in association with the tumor syndrome neurofibromatosis type 1 (NF1). MPNST often pose a diagnostic challenge due to their frequent lack of pathognomonic morphological or immunohistochemical features. Mutations in the NF1 tumor suppressor gene are found in all NF1-associated and many sporadic MPNST. The presence of NF1 mutation may have the potential to differentiate MPNST from several morphologically similar neoplasms; however, mutation detection is hampered by the size of the gene and the lack of mutational hot spots. Here we describe a newly developed monoclonal antibody binding to the C-terminus of neurofibromin (clone NFC) which was selected for optimal performance in routinely processed formalin-fixed and paraffin-embedded tissue. NFC immunohistochemistry revealed loss of neurofibromin in 22/25 (88 %) of NF1-associated and 26/61 (43 %) of sporadic MPNST. There was a strong association of neurofibromin loss with deletions affecting the NF1 gene (P < 0.01). In a series of 256 soft tissue tumors of different histotypes NFC staining showed loss of neurofibromin in 2/8 myxofibrosarcomas, 2/12 (16 %) pleomorphic liposarcomas, 1/16 (6 %) leiomyosarcomas, and 4/28 (14 %) unclassified undifferentiated pleomorphic sarcomas. However, loss of neurofibromin was not observed in 22 synovial sarcomas, 27 schwannomas, 23 solitary fibrous tumors, 14 low-grade fibromyxoid sarcomas, 50 dedifferentiated liposarcomas, 27 myxoid liposarcomas, 13 angiosarcomas, 9 extraskeletal myxoid chondrosarcomas, and 7 epitheloid sarcomas. Immunohistochemistry using antibody NFC may substantially facilitate sarcoma research and diagnostics.


Assuntos
Anticorpos , Neoplasias de Bainha Neural/diagnóstico , Neurilemoma/diagnóstico , Neurilemoma/metabolismo , Neurofibromina 1/imunologia , Animais , Linhagem Celular Transformada , Clonagem Molecular , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Neurofibromina 1/genética , Células de Schwann/metabolismo , Células de Schwann/patologia , Transfecção
19.
PLoS One ; 8(7): e69209, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935957

RESUMO

Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.


Assuntos
Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Olho/metabolismo , Proteínas Nucleares/genética , Organogênese/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Encéfalo/embriologia , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Cerebelo/embriologia , Cerebelo/metabolismo , Proteínas de Ligação a DNA , Epistasia Genética , Olho/embriologia , Homeostase/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Fenótipo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Células de Purkinje/metabolismo , Retina/citologia , Retina/embriologia , Retina/metabolismo
20.
EMBO J ; 31(5): 1177-89, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22266795

RESUMO

The ATR (ATM (ataxia telangiectasia mutated) and rad3-related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder, ATR-Seckel syndrome. To understand how ATR functions during neurogenesis, we conditionally deleted Atr broadly throughout the murine nervous system, or in a restricted manner in the dorsal telencephalon. Unexpectedly, in both scenarios, Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr-deficient embryonic cerebellar external germinal layer underwent p53- (and p16(Ink4a/Arf))-independent proliferation arrest, other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs, in the nervous system, p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion, supporting non-overlapping physiological roles for these related DNA damage-response kinases in the brain. Rather than an essential general role in preventing replication stress, our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis.


Assuntos
Encéfalo/embriologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/fisiologia , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Encéfalo/patologia , Proteínas de Ciclo Celular/deficiência , Proliferação de Células , Histocitoquímica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia , Proteínas Serina-Treonina Quinases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA