Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
PLoS Pathog ; 19(7): e1011477, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410772

RESUMO

SUMO modifications regulate the function of many proteins and are important in controlling herpesvirus infections. We performed a site-specific proteomic analysis of SUMO1- and SUMO2-modified proteins in Epstein-Barr virus (EBV) latent and lytic infection to identify proteins that change in SUMO modification status in response to EBV reactivation. Major changes were identified in all three components of the TRIM24/TRIM28/TRIM33 complex, with TRIM24 being rapidly degraded and TRIM33 being phosphorylated and SUMOylated in response to EBV lytic infection. Further experiments revealed TRIM24 and TRIM33 repress expression of the EBV BZLF1 lytic switch gene, suppressing EBV reactivation. However, BZLF1 was shown to interact with TRIM24 and TRIM33, resulting in disruption of TRIM24/TRIM28/TRIM33 complexes, degradation of TRIM24 and modification followed by degradation of TRIM33. Therefore, we have identified TRIM24 and TRIM33 as cellular antiviral defence factors against EBV lytic infection and established the mechanism by which BZLF1 disables this defence.


Assuntos
Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4/genética , Transativadores/genética , Transativadores/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteômica , Ativação Viral , Latência Viral , Fatores de Transcrição/metabolismo , Proteínas de Transporte
3.
J Virol ; 97(2): e0008923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700640

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
Pesquisa , Virologia , Viroses , Humanos , COVID-19/prevenção & controle , Disseminação de Informação , Pandemias/prevenção & controle , Formulação de Políticas , Pesquisa/normas , Pesquisa/tendências , SARS-CoV-2 , Virologia/normas , Virologia/tendências , Viroses/prevenção & controle , Viroses/virologia , Vírus
4.
mBio ; 14(1): e0018823, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700642

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Infecções Respiratórias , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Vírus/genética
5.
mSphere ; 8(2): e0003423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36700653

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Antivirais
6.
J Virol ; 96(18): e0066022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069545

RESUMO

Herpesvirus lytic infection causes cells to arrest at the G1/S phase of the cell cycle by poorly defined mechanisms. In a prior study using fluorescent ubiquitination-based cell cycle indicator (FUCCI) cells that express fluorescently tagged proteins marking different stages of the cell cycle, we showed that the Epstein-Barr virus (EBV) protein BORF2 induces the accumulation of G1/S cells, and that BORF2 affects p53 levels without affecting the p53 target protein p21. We also found that BORF2 specifically interacted with APOBEC3B (A3B) and forms perinuclear bodies with A3B that prevent A3B from mutating replicating EBV genomes. We now show that BORF2 also interacts with p53 and that A3B interferes with the BORF2-p53 interaction, although A3B and p53 engage distinct surfaces on BORF2. Cell cycle analysis showed that G1/S induction by BORF2 is abrogated when either p53 or A3B is silenced or when an A3B-binding mutant of BORF2 is used. Furthermore, silencing A3B in EBV lytic infection increased cell proliferation, supporting a role for A3B in G1/S arrest. These data suggest that the p53 induced by BORF2 is inactive when it binds BORF2, but is released and induces G1/S arrest when A3B is present and sequesters BORF2 in perinuclear bodies. Interestingly, this mechanism is conserved in the BORF2 homologue in HSV-1, which also re-localizes A3B, induces and binds p53, and induces G1/S dependent on A3B and p53. In summary, we have identified a new mechanism by which G1/S arrest can be induced in herpesvirus lytic infection. IMPORTANCE In lytic infection, herpesviruses cause cells to arrest at the G1/S phase of the cell cycle in order to provide an optimal environment for viral replication; however, the mechanisms involved are not well understood. We have shown that the Epstein-Barr virus BORF2 protein and its homologue in herpes simplex virus 1 both induce G1/S, and do this by similar mechanisms which involve binding p53 and APOBEC3B and induction of p53. Our study identifies a new mechanism by which G1/S arrest can be induced in herpesvirus lytic infection and a new role of APOBEC3B in herpesvirus lytic infection.


Assuntos
Ciclo Celular , Citidina Desaminase , Infecções por Vírus Epstein-Barr , Proteína Supressora de Tumor p53 , Humanos , Citidina Desaminase/metabolismo , Infecções por Vírus Epstein-Barr/fisiopatologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Viruses ; 14(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35632712

RESUMO

Zika virus (ZIKV) establishes persistent infections in multiple human tissues, a phenomenon that likely plays a role in its ability to cause congenital birth defects and neurological disease. Multiple nonstructural proteins encoded by ZIKV, in particular NS5, are known to suppress the interferon (IFN) response by attacking different steps in this critical antiviral pathway. Less well known are the potential roles of structural proteins in affecting the host immune response during ZIKV infection. Capsid proteins of flaviviruses are of particular interest because a pool of these viral proteins is targeted to the nuclei during infection and, as such, they have the potential to affect host cell gene expression. In this study, RNA-seq analyses revealed that capsid proteins from six different flaviviruses suppress expression of type I IFN and IFN-stimulated genes. Subsequent interactome and in vitro ubiquitination assays showed that ZIKV capsid protein binds to and prevents activating ubiquitination of RIG-I CARD domains by TRIM25, a host factor that is important for the induction arm of the IFN response. The other flavivirus capsid proteins also interacted with TRIM25, suggesting that these viral proteins may attenuate antiviral signaling pathways at very early stages of infection, potentially even before nonstructural proteins are produced.


Assuntos
Proteínas do Capsídeo , Interferons , Infecção por Zika virus , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Humanos , Interferons/imunologia , Proteínas não Estruturais Virais/genética , Zika virus/metabolismo , Zika virus/fisiologia , Infecção por Zika virus/imunologia
8.
PLoS Pathog ; 18(1): e1010235, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007297

RESUMO

The Epstein-Barr virus (EBV) BGLF2 protein is a tegument protein with multiple effects on the cellular environment, including induction of SUMOylation of cellular proteins. Using affinity-purification coupled to mass-spectrometry, we identified the miRNA-Induced Silencing Complex (RISC), essential for miRNA function, as a top interactor of BGLF2. We confirmed BGLF2 interaction with the Ago2 and TNRC6 components of RISC in multiple cell lines and their co-localization in cytoplasmic bodies that also contain the stress granule marker G3BP1. In addition, BGLF2 expression led to the loss of processing bodies in multiple cell types, suggesting disruption of RISC function in mRNA regulation. Consistent with this observation, BGLF2 disrupted Ago2 association with multiple miRNAs. Using let-7 miRNAs as a model, we tested the hypothesis that BGLF2 interfered with the function of RISC in miRNA-mediated mRNA silencing. Using multiple reporter constructs with 3'UTRs containing let-7a regulated sites, we showed that BGLF2 inhibited let-7a miRNA activity dependent on these 3'UTRs, including those from SUMO transcripts which are known to be regulated by let-7 miRNAs. In keeping with these results, we showed that BGLF2 increased the cellular level of unconjugated SUMO proteins without affecting the level of SUMO transcripts. Such an increase in free SUMO is known to drive SUMOylation and would account for the effect of BGLF2 in inducing SUMOylation. We further showed that BGLF2 expression inhibited the loading of let-7 miRNAs into Ago2 proteins, and conversely, that lytic infection with EBV lacking BGLF2 resulted in increased interaction of let-7a and SUMO transcripts with Ago2, relative to WT EBV infection. Therefore, we have identified a novel role for BGLF2 as a miRNA regulator and shown that one outcome of this activity is the dysregulation of SUMO transcripts that leads to increased levels of free SUMO proteins and SUMOylation.


Assuntos
Carboxipeptidases/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/metabolismo , Interações Hospedeiro-Parasita/fisiologia , MicroRNAs/metabolismo , Proteínas Virais de Fusão/metabolismo , Linhagem Celular , Infecções por Vírus Epstein-Barr/metabolismo , Humanos , Sumoilação
9.
Virology ; 562: 103-109, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34304093

RESUMO

Whole genome sequence analysis of Epstein-Barr virus genomes from tumours and healthy individuals identified three amino acid changes in EBNA1 that are strongly associated with gastric carcinoma and nasopharyngeal carcinoma. Here we show that, while these mutations do not impact EBNA1 plasmid maintenance function, one of them (Thr85Ala) decreases transcriptional activation and results in a gain of function interaction with PLOD1 and PLOD3. PLOD family proteins are strongly linked to multiple cancers, and PLOD1 is recognized as a prognostic marker of gastric carcinoma. We identified the PLOD1 binding site in EBNA1as the N-terminal transactivation domain and show that lysine 83 is critical for this interaction. The results provide a novel link between EBV infection and the cancer-associated PLOD proteins.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Neoplasias/virologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Sítios de Ligação , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/metabolismo , Humanos , Mutação , Neoplasias/metabolismo , Ligação Proteica , Ativação Transcricional/genética
10.
Tumour Virus Res ; 12: 200218, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34052467

RESUMO

Epstein-Barr virus (EBV) infects most people worldwide and persists for life due to complicated interplay between lytic infection and multiple types of latent infections. While usually asymptomatic, EBV is a causative agent in several types of cancer and has a strong association with multiple sclerosis. Exactly how EBV promotes these diseases and why they are rare consequences of infection are incompletely understood. Here I will discuss current ideas on disease induction by EBV, including the importance of lytic protein expression in the context of latent infection as well as the possible importance of specific EBV variants in disease induction.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Regulação Viral da Expressão Gênica , Humanos
11.
Virus Res ; 298: 198394, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775751

RESUMO

Herpesviruses encode multiple proteins directly involved in DNA replication, including a DNA polymerase and a DNA polymerase processivity factor. As the name implies, these processivity factors are essential for efficient DNA synthesis, however they also make additional contributions to DNA replication, as well as having novel roles in transcription and modulation of host processes. Here we review the mechanisms by which DNA polymerase processivity factors from all three families of mammalian herpesviruses contribute to viral DNA replication as well as to additional aspects of viral infection.


Assuntos
Replicação do DNA , Replicação Viral , Animais , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mamíferos/metabolismo , Simplexvirus , Replicação Viral/genética
12.
Sci Rep ; 9(1): 15664, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653879

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534038

RESUMO

An integral part of the antiviral innate immune response is the APOBEC3 family of single-stranded DNA cytosine deaminases, which inhibits virus replication through deamination-dependent and -independent activities. Viruses have evolved mechanisms to counteract these enzymes, such as HIV-1 Vif-mediated formation of a ubiquitin ligase to degrade virus-restrictive APOBEC3 enzymes. A new example is Epstein-Barr virus (EBV) ribonucleotide reductase (RNR)-mediated inhibition of cellular APOBEC3B (A3B). The large subunit of the viral RNR, BORF2, causes A3B relocalization from the nucleus to cytoplasmic bodies and thereby protects viral DNA during lytic replication. Here, we use coimmunoprecipitation and immunofluorescence microscopy approaches to ask whether this mechanism is shared with the closely related gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) and the more distantly related alphaherpesvirus herpes simplex virus 1 (HSV-1). The large RNR subunit of KSHV, open reading frame 61 (ORF61), coprecipitated multiple APOBEC3s, including A3B and APOBEC3A (A3A). KSHV ORF61 also caused relocalization of these two enzymes to perinuclear bodies (A3B) and to oblong cytoplasmic structures (A3A). The large RNR subunit of HSV-1, ICP6, also coprecipitated A3B and A3A and was sufficient to promote the relocalization of these enzymes from nuclear to cytoplasmic compartments. HSV-1 infection caused similar relocalization phenotypes that required ICP6. However, unlike the infectivity defects previously reported for BORF2-null EBV, ICP6 mutant HSV-1 showed normal growth rates and plaque phenotypes. Combined, these results indicate that both gamma- and alphaherpesviruses use a conserved RNR-dependent mechanism to relocalize A3B and A3A and furthermore suggest that HSV-1 possesses at least one additional mechanism to neutralize these antiviral enzymes.IMPORTANCE The APOBEC3 family of DNA cytosine deaminases constitutes a vital innate immune defense against a range of different viruses. A novel counterrestriction mechanism has recently been uncovered for the gammaherpesvirus EBV, in which a subunit of the viral protein known to produce DNA building blocks (ribonucleotide reductase) causes A3B to relocalize from the nucleus to the cytosol. Here, we extend these observations with A3B to include a closely related gammaherpesvirus, KSHV, and a more distantly related alphaherpesvirus, HSV-1. These different viral ribonucleotide reductases also caused relocalization of A3A, which is 92% identical to A3B. These studies are important because they suggest a conserved mechanism of APOBEC3 evasion by large double-stranded DNA herpesviruses. Strategies to block this host-pathogen interaction may be effective for treating infections caused by these herpesviruses.


Assuntos
Citidina Desaminase/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/metabolismo , Desaminases APOBEC , Linhagem Celular , Citosina Desaminase/metabolismo , Células HEK293 , Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas/metabolismo , Replicação Viral
14.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462557

RESUMO

The BMRF1 protein of Epstein-Barr virus (EBV) has multiple roles in viral lytic infection, including serving as the DNA polymerase processivity factor, activating transcription from several EBV promoters and inhibiting the host DNA damage response to double-stranded DNA breaks (DSBs). Using affinity purification coupled to mass spectrometry, we identified the nucleosome remodeling and deacetylation (NuRD) complex as the top interactor of BMRF1. We further found that NuRD components localize with BMRF1 at viral replication compartments and that this interaction occurs through the BMRF1 C-terminal region previously shown to mediate transcriptional activation. We identified an RBBP4 binding motif within this region that can interact with both RBBP4 and MTA2 components of the NuRD complex and showed that point mutation of this motif abrogates NuRD binding as well as the ability of BMRF1 to activate transcription from the BDLF3 and BLLF1 EBV promoters. In addition to its role in transcriptional regulation, NuRD has been shown to contribute to DSB signaling in enabling recruitment of RNF168 ubiquitin ligase and subsequent ubiquitylation at the break. We showed that BMRF1 inhibited RNF168 recruitment and ubiquitylation at DSBs and that this inhibition was at least partly relieved by loss of the NuRD interaction. The results reveal a mechanism by which BMRF1 activates transcription and inhibits DSB signaling and a novel role for NuRD in transcriptional activation in EBV.IMPORTANCE The Epstein-Barr virus (EBV) BMRF1 protein is critical for EBV infection, playing key roles in viral genome replication, activation of EBV genes, and inhibition of host DNA damage responses (DDRs). Here we show that BMRF1 targets the cellular nucleosome remodeling and deacetylation (NuRD) complex, using a motif in the BMRF1 transcriptional activation sequence. Mutation of this motif disrupts the ability of BMRF1 to activate transcription and interfere with DDRs, showing the importance of the NuRD interaction for BMRF1 functions. BMRF1 was shown to act at the same step in the DDR as NuRD, suggesting that it interferes with NuRD function.


Assuntos
Antígenos Virais/metabolismo , Dano ao DNA , Herpesvirus Humano 4/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Antígenos Virais/genética , Linhagem Celular Tumoral , Replicação do DNA , DNA Viral/genética , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Células HEK293 , Células HeLa , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Humanos , Glicoproteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Transativadores/metabolismo , Ativação Transcricional , Proteínas Virais/metabolismo , Replicação Viral
15.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31341047

RESUMO

Epstein-Barr virus (EBV) maintains a life-long infection due to the ability to alternate between latent and lytic modes of replication. Lytic reactivation starts with derepression of the Zp promoter controlling BZLF1 gene expression, which binds and is activated by the c-Jun transcriptional activator. Here, we identified the cellular Arkadia-like 1 (ARKL1) protein as a negative regulator of Zp and EBV reactivation. Silencing of ARKL1 in the context of EBV-positive gastric carcinoma (AGS) cells, nasopharyngeal carcinoma (NPC43) cells, and B (M81) cells led to increased lytic protein expression, whereas overexpression inhibited BZLF1 expression. Similar effects of ARKL1 modulation were seen on BZLF1 transcripts as well as on Zp activity in Zp reporter assays, showing that ARKL1 repressed Zp. Proteomic profiling of ARKL1-host interactions identified c-Jun as an ARKL1 interactor, and reporter assays for Jun transcriptional activity showed that ARKL1 inhibited Jun activity. The ARKL1-Jun interaction required ARKL1 sequences that we previously showed mediated binding to the CK2 kinase regulatory subunit CK2ß, suggesting that CK2ß might mediate the ARKL1-Jun interaction. This model was supported by the findings that silencing of CK2ß, but not the CK2α catalytic subunit, abrogated the ARKL1-Jun interaction and phenocopied ARKL1 silencing in promoting EBV reactivation. Additionally, ARKL1 was associated with Zp in reporter assays and this was increased by additional CK2ß. Together, the data indicate that ARKL1 is a negative regulator of Zp and EBV reactivation that acts by inhibiting Jun activity through a CK2ß-mediated interaction.IMPORTANCE Epstein-Barr virus (EBV) maintains a life-long infection due to the ability to alternate between latent and lytic modes of replication and is associated with several types of cancer. We have identified a cellular protein (ARKL1) that acts to repress the reactivation of EBV from the latent to the lytic cycle. We show that ARKL1 acts to repress transcription of the EBV lytic switch protein by inhibiting the activity of the cellular transcription factor c-Jun. This not only provides a new mechanism of regulating EBV reactivation but also identifies a novel cellular function of ARKL1 as an inhibitor of Jun-mediated transcription.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Interações Hospedeiro-Patógeno , Ativação Viral , Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno/genética , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transativadores/genética , Transativadores/metabolismo
16.
Sci Rep ; 9(1): 2724, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804394

RESUMO

The ubiquitin specific protease 7 (USP7 or HAUSP) is known to regulate a variety of cellular processes by binding and deubiquitylating specific target proteins. To gain a more comprehensive understanding of its interactions and functions, we used affinity purification coupled to mass spectrometry to profile USP7 interactions. This revealed a novel interaction with FBXO38, a poorly characterized F-box protein. We showed that USP7 stabilizes FBXO38 dependent on its catalytic activity by protecting FBXO38 from proteasomal degradation. We used a BioID approach to profile the protein interactions (and putative functions) of FBXO38, revealing an interaction with KIF20B, a Kinesin-6 protein required for efficient cytokinesis. FBXO38 was shown to function independently from an SCF complex to stabilize KIF20B. Consequently, depletion of either FBXO38 or USP7 led to dramatic decreases in KIF20B levels and KIF20B at the midbody, which were manifested in cytokinetic defects. Furthermore, cytokinetic defects associated with USP7 silencing were rescued by restoring FBXO38 or KIF20B. The results indicate a novel mechanism of regulating cytokinesis through USP7 and FBXO38.


Assuntos
Citocinese , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Mapas de Interação de Proteínas
17.
Nat Microbiol ; 4(1): 78-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420783

RESUMO

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide-like (APOBEC) family of single-stranded DNA (ssDNA) cytosine deaminases provides innate immunity against virus and transposon replication1-4. A well-studied mechanism is APOBEC3G restriction of human immunodeficiency virus type 1, which is counteracted by a virus-encoded degradation mechanism1-4. Accordingly, most work has focused on retroviruses with obligate ssDNA replication intermediates and it is unclear whether large double-stranded DNA (dsDNA) viruses may be similarly susceptible to restriction. Here, we show that the large dsDNA herpesvirus Epstein-Barr virus (EBV), which is the causative agent of infectious mononucleosis and multiple cancers5, utilizes a two-pronged approach to counteract restriction by APOBEC3B. Proteomics studies and immunoprecipitation experiments showed that the ribonucleotide reductase large subunit of EBV, BORF26,7, binds APOBEC3B. Mutagenesis mapped the interaction to the APOBEC3B catalytic domain, and biochemical studies demonstrated that BORF2 stoichiometrically inhibits APOBEC3B DNA cytosine deaminase activity. BORF2 also caused a dramatic relocalization of nuclear APOBEC3B to perinuclear bodies. On lytic reactivation, BORF2-null viruses were susceptible to APOBEC3B-mediated deamination as evidenced by lower viral titres, lower infectivity and hypermutation. The Kaposi's sarcoma-associated herpesvirus homologue, ORF61, also bound APOBEC3B and mediated relocalization. These data support a model where the genomic integrity of human γ-herpesviruses is maintained by active neutralization of the antiviral enzyme APOBEC3B.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/metabolismo , Sistemas CRISPR-Cas , Domínio Catalítico/genética , Linhagem Celular , Genoma Viral/genética , Células HEK293 , Herpesvirus Humano 4/crescimento & desenvolvimento , Humanos , Antígenos de Histocompatibilidade Menor , Interferência de RNA , RNA Interferente Pequeno/genética , Ribonucleotídeo Redutases/genética , Proteínas Virais/genética
18.
Sci Rep ; 8(1): 15833, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367141

RESUMO

The ubiquitin specific protease, USP7, regulates multiple cellular pathways relevant for cancer through its ability to bind and sometimes stabilize specific target proteins through deubiquitylation. To gain a more complete profile of USP7 interactions in cancer cells, we performed affinity purification coupled to mass spectrometry to identify USP7 binding targets in gastric carcinoma cells. This confirmed reported associations of USP7 with USP11, PPM1G phosphatase and TRIP12 E3 ubiquitin ligase as well as identifying novel interactions with two DEAD/DEAH-box RNA helicases, DDX24 and DHX40. Using USP7 binding pocket mutants, we show that USP11, PPM1G, TRIP12 and DDX24 bind USP7 through its TRAF domain binding pocket, while DHX40 interacts with USP7 through a distinct binding pocket in the Ubl2 domain. P/A/ExxS motifs in USP11 and DDX24 that are critical for USP7 binding were also identified. Modulation of USP7 expression levels and inhibition of USP7 catalytic activity in multiple cells lines showed that USP7 consistently stabilizes DDX24, DHX40 and TRIP12 dependent on its catalytic activity, while USP11 and PPM1G levels were not consistently affected. Our study better defines the mechanisms of USP7 interaction with known targets and identifies DDX24 and DHX40 as new targets that are specifically bound and regulated by USP7.


Assuntos
Peptidase 7 Específica de Ubiquitina/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Peptidase 7 Específica de Ubiquitina/genética
19.
PLoS Pathog ; 14(7): e1007176, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979787

RESUMO

Many cellular processes pertinent for viral infection are regulated by the addition of small ubiquitin-like modifiers (SUMO) to key regulatory proteins, making SUMOylation an important mechanism by which viruses can commandeer cellular pathways. Epstein-Barr virus (EBV) is a master at manipulating of cellular processes, which enables life-long infection but can also lead to the induction of a variety of EBV-associated cancers. To identify new mechanisms by which EBV proteins alter cells, we screened a library of 51 EBV proteins for global effects on cellular SUMO1 and SUMO2 modifications (SUMOylation), identifying several proteins not previously known to manipulate this pathway. One EBV protein (BRLF1) globally induced the loss of SUMOylated proteins, in a proteasome-dependent manner, as well as the loss of promeylocytic leukemia nuclear bodies. However, unlike its homologue (Rta) in Kaposi's sarcoma associated herpesvirus, it did not appear to have ubiquitin ligase activity. In addition we identified the EBV SM protein as globally upregulating SUMOylation and showed that this activity was conserved in its homologues in herpes simplex virus 1 (HSV1 UL54/ICP27) and cytomegalovirus (CMV UL69). All three viral homologues were shown to bind SUMO and Ubc9 and to have E3 SUMO ligase activity in a purified system. These are the first SUMO E3 ligases discovered for EBV, HSV1 and CMV. Interestingly the homologues had different specificities for SUMO1 and SUMO2, with SM and UL69 preferentially binding SUMO1 and inducing SUMO1 modifications, and UL54 preferentially binding SUMO2 and inducing SUMO2 modifications. The results provide new insights into the function of this family of conserved herpesvirus proteins, and the conservation of this SUMO E3 ligase activity across diverse herpesviruses suggests the importance of this activity for herpesvirus infections.


Assuntos
Citomegalovirus/enzimologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 4/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Estudo de Associação Genômica Ampla , Humanos , Sumoilação
20.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743367

RESUMO

To replicate and persist in human cells, linear double-stranded DNA (dsDNA) viruses, such as Epstein-Barr virus (EBV), must overcome the host DNA damage response (DDR) that is triggered by the viral genomes. Since this response is necessary to maintain cellular genome integrity, its inhibition by EBV is likely an important factor in the development of cancers associated with EBV infection, including gastric carcinoma. Here we present the first extensive screen of EBV proteins that inhibit dsDNA break signaling. We identify the BKRF4 tegument protein as a DDR inhibitor that interferes with histone ubiquitylation at dsDNA breaks and recruitment of the RNF168 histone ubiquitin ligase. We further show that BKRF4 binds directly to histones through an acidic domain that targets BKRF4 to cellular chromatin and is sufficient to inhibit dsDNA break signaling. BKRF4 transcripts were detected in EBV-positive gastric carcinoma cells (AGS-EBV), and these increased in lytic infection. Silencing of BKRF4 in both latent and lytic AGS-EBV cells (but not in EBV-negative AGS cells) resulted in increased dsDNA break signaling, confirming a role for BKRF4 in DDR inhibition in the context of EBV infection and suggesting that BKRF4 is expressed in latent cells. BKRF4 was also found to be consistently expressed in EBV-positive gastric tumors in the absence of a full lytic infection. The results suggest that BKRF4 plays a role in inhibiting the cellular DDR in latent and lytic EBV infection and that the resulting accumulation of DNA damage might contribute to development of gastric carcinoma.IMPORTANCE Epstein-Barr virus (EBV) infects most people worldwide and is causatively associated with several types of cancer, including ∼10% of gastric carcinomas. EBV encodes ∼80 proteins, many of which are believed to manipulate cellular regulatory pathways but are poorly characterized. The DNA damage response (DDR) is one such pathway that is critical for maintaining genome integrity and preventing cancer-associated mutations. In this study, a screen for EBV proteins that inhibit the DDR identified BKRF4 as a DDR inhibitor that binds histones and blocks their ubiquitylation at the DNA damage sites. We also present evidence that BKRF4 is expressed in both latent and lytic forms of EBV infection, where it downregulates the DDR, as well as in EBV-positive gastric tumors. The results suggest that BKRF4 could contribute to the development of gastric carcinoma through its ability to inhibit the DDR.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Histonas/metabolismo , Neoplasias Gástricas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Infecções por Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Humanos , Domínios Proteicos , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Virais/química , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA