Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 9(16): 9334-9349, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463025

RESUMO

Despite many studies on Adélie penguin breeding phenology, understanding the drivers of clutch initiation dates (CIDs, egg 1 lay date) is limited or lacks consensus. Here, we investigated Adélie penguin CIDs over 25 years (1991-2016) on two neighboring islands, Torgersen and Humble (<1 km apart), in a rapidly warming region near Palmer Station, Antarctica. We found that sea ice was the primary large-scale driver of CIDs and precipitation was a secondary small-scale driver that fine-tunes CID to island-specific nesting habitat geomorphology. In general, CIDs were earlier (later) when the spring sea ice retreat was earlier (later) and when the preceding annual ice season was shorter (longer). Island-specific effects related to precipitation and island geomorphology caused greater snow accumulation and delayed CIDs by ~2 days on Torgersen compared to Humble Island. When CIDs on the islands were similar, conditions were mild with less snow across breeding sites. At Torgersen Island, the negative relationship between CID and breeding success highlights detrimental effects of delayed breeding and/or snow on penguin fitness. Past phenological studies reported a relationship between air temperature and CID, assumed to be related to precipitation, but we found air temperature was more highly correlated to sea ice, revealing a misinterpretation of temperature effects. Finally, contrasting trends in CIDs based on temporal shifts in regional sea ice patterns revealed trends toward earlier CIDs (4-6 day advance) from 1979 to 2009 as the annual ice season shortened, and later CIDs (7-10 day delay) from 2010 to 2016 as the annual ice season lengthened. Adélie penguins tracked environmental conditions with flexible breeding phenology, but their life history remains vulnerable to subpolar weather conditions that can delay CIDs and decrease breeding success, especially on landscapes where geomorphology facilitates snow accumulation.

2.
Sci Rep ; 9(1): 157, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655549

RESUMO

Discovering the predictors of foraging locations can be challenging, and is often the critical missing piece for interpreting the ecological significance of observed movement patterns of predators. This is especially true in dynamic coastal marine systems, where planktonic food resources are diffuse and must be either physically or biologically concentrated to support upper trophic levels. In the Western Antarctic Peninsula, recent climate change has created new foraging sympatry between Adélie (Pygoscelis adeliae) and gentoo (P. papua) penguins in a known biological hotspot near Palmer Deep canyon. We used this recent sympatry as an opportunity to investigate how dynamic local oceanographic features affect aspects of the foraging ecology of these two species. Simulated particle trajectories from measured surface currents were used to investigate the co-occurrence of convergent ocean features and penguin foraging locations. Adélie penguin diving activity was restricted to the upper mixed layer, while gentoo penguins often foraged much deeper than the mixed layer, suggesting that Adélie penguins may be more responsive to dynamic surface convergent features compared to gentoo penguins. We found that, despite large differences in diving and foraging behavior, both shallow-diving Adélie and deeper-diving gentoo penguins strongly selected for surface convergent features. Furthermore, there was no difference in selectivity for shallow- versus deep-diving gentoo penguins. Our results suggest that these two mesopredators are selecting surface convergent features, however, how these surface signals are related to subsurface prey fields is unknown.

3.
Ecol Evol ; 8(19): 9764-9778, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386573

RESUMO

Climate-induced range overlap can result in novel interactions between similar species and potentially lead to competitive exclusion. The West Antarctic Peninsula (WAP) is one of the most rapidly warming regions on Earth and is experiencing a poleward climate migration from a polar to subpolar environment. This has resulted in a range expansion of the ice-intolerant gentoo penguins (Pygoscelis papua) and a coincident decrease in ice-obligate Adélie penguins (P. adeliae) near Palmer Station, Anvers Island, WAP. Ecologically similar species that share a limited prey resource must occupy disparate foraging niches in order to co-exist. Therefore, we determined the extent of foraging and dietary niche segregation between Adélie and gentoo penguins during the austral breeding season near Palmer Station. This research was conducted across six breeding seasons, from 2009 to 2014, which allowed us to investigate niche overlap in the context of interannual resource variability. Using biotelemetry and diet sampling, we found substantial overlap in the diets of Adélie and gentoo penguins, who primarily consumed Antarctic krill (Euphausia superba); however, our results showed that Adélie and gentoo penguins partitioned this shared prey resource through horizontal segregation of their core foraging areas. We did not find evidence that Antarctic krill were a limiting resource during the breeding season or that climate-induced sympatry of Adélie and gentoo penguins resulted in competition for prey or caused the subsequent differing population trajectories. This apparent absence of resource competition between Adélie and gentoo penguins throughout this study implies that current population trends in this region are governed by other biological and physical factors. Our results highlight the importance of understanding the mechanistic processes that influence top predator populations in the context of climate-driven ecosystem shifts.

4.
Healthc (Amst) ; 6(2): 150-155, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28958850

RESUMO

Despite considerable investment in digital health (DH) companies and a growing DH ecosystem, there are multiple challenges to testing and implementing innovative solutions. Health systems have recognized the potential of DH and have formed DH innovation centers. However, limited information is available on DH innovation center processes, best practices, or outcomes. This case report describes a DH innovation center process that can be replicated across health systems and defines and benchmarks process indicators to assess DH innovation center performance. The Brigham and Women's Hospital's Digital Health Innovation Group (DHIG) accelerates DH innovations from idea to pilot safely and efficiently using a structured process. Fifty-four DH innovations were accelerated by the DHIG process between July 2014 and December 2016. In order to measure effectiveness of the DHIG process, key process indicators were defined as 1) number of solutions that completed each DHIG phase and 2) length of time to complete each phase. Twenty-three DH innovations progressed to pilot stage and 13 innovations were terminated after barriers to pilot implementation were identified by the DHIG process. For 4 DH solutions that executed a pilot, the average time for innovations to proceed from DHIG intake to pilot initiation was 9 months. Overall, the DHIG is a reproducible process that addresses key roadblocks in DH innovation within health systems. To our knowledge, this is the first report to describe DH innovation process indicators and results within an academic health system. Therefore, there is no published data to compare our results with the results of other DH innovation centers. Standardized data collection and indicator reporting could allow benchmark comparisons across institutions. Additional opportunities exist for the validation of DH solution effectiveness and for translational support from pilot to implementation. These are critical steps to advance DH technologies and effectively leverage the DH ecosystem to transform healthcare.


Assuntos
Invenções/tendências , Inovação Organizacional , Indicadores de Qualidade em Assistência à Saúde/tendências , Troca de Informação em Saúde , Humanos
5.
Sci Rep ; 6: 18820, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26732496

RESUMO

Climate-driven sympatry may lead to competition for food resources between species. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. On fine scales, we tested for foraging competition between these species during the chick-rearing period by comparing their foraging behaviors with the distribution of their prey, Antarctic krill. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguins, and found that krill selected for habitats that balance the need to consume food and avoid predation. In overlapping Adélie and gentoo penguin foraging areas, four gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion of Adélie penguins by gentoo penguins. Contrary to a recent theory, which suggests that increased competition for krill is one of the major drivers of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.


Assuntos
Clima , Ecossistema , Cadeia Alimentar , Simpatria , Animais , Regiões Antárticas , Modelos Teóricos , Comportamento Predatório , Spheniscidae
6.
Nat Commun ; 5: 4318, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25000452

RESUMO

Understanding the mechanisms by which climate variability affects multiple trophic levels in food webs is essential for determining ecosystem responses to climate change. Here we use over two decades of data collected by the Palmer Long Term Ecological Research program (PAL-LTER) to determine how large-scale climate and local physical forcing affect phytoplankton, zooplankton and an apex predator along the West Antarctic Peninsula (WAP). We show that positive anomalies in chlorophyll-a (chl-a) at Palmer Station, occurring every 4-6 years, are constrained by physical processes in the preceding winter/spring and a negative phase of the Southern Annular Mode (SAM). Favorable conditions for phytoplankton included increased winter ice extent and duration, reduced spring/summer winds, and increased water column stability via enhanced salinity-driven density gradients. Years of positive chl-a anomalies are associated with the initiation of a robust krill cohort the following summer, which is evident in Adélie penguin diets, thus demonstrating tight trophic coupling. Projected climate change in this region may have a significant, negative impact on phytoplankton biomass, krill recruitment and upper trophic level predators in this coastal Antarctic ecosystem.


Assuntos
Cadeia Alimentar , Estações do Ano , Animais , Regiões Antárticas , Bactérias , Clorofila/análise , Euphausiacea , Fitoplâncton , Spheniscidae
7.
Bioanalysis ; 3(2): 197-213, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21250848

RESUMO

Understanding the metabolism of a novel drug candidate in drug discovery and drug development is as important today as it was 30 years ago. What has changed in this period is the technology available for proficient metabolite characterization from complex biological sources. High-efficiency chromatography, sensitive MS and information-rich NMR spectroscopy are approaches that are now commonplace in the modern laboratory. These advancements in analytical technology have led to unequivocal metabolite identification often being performed at the earliest opportunity, following the first dose to man. For this reason an alternative approach is to shift from predicting and extrapolating possible human metabolism from in silico and nonclinical sources, to actual characterization at steady state within early clinical trials. This review provides an overview of modern approaches for characterizing drug metabolites in these early clinical studies. Since much of this progress has come from technology development over the years, the review is concluded with a forward-looking perspective on how this progression may continue into the next decade.


Assuntos
Líquidos Corporais/química , Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Drogas em Investigação/análise , Drogas em Investigação/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Líquidos Corporais/metabolismo , Cromatografia , Descoberta de Drogas , Processamento Eletrônico de Dados , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA