RESUMO
Understanding recruitment, the process by which individuals are added to a population or to a fishery, is critical for understanding population dynamics and facilitating sustainable fisheries management. Important variation in recruitment dynamics is observed among populations, wherein some populations exhibit asymptotic productivity and others exhibit overcompensation (i.e., compensatory density-dependence in recruitment). Our ability to understand this interpopulation variability in recruitment patterns is limited by a poor understanding of the underlying mechanisms, such as the complex interactions between density dependence, recruitment, and environment. Furthermore, most studies on recruitment are conducted using an observational design with long time series that are seldom replicated across populations in an experimentally controlled fashion. Without proper replication, extrapolations between populations are tenuous, and the underlying environmental trends are challenging to quantify. To address these issues, we conducted a field experiment manipulating stocking densities of juvenile brook trout Salvelinus fontinalis in three wild populations to show that these neighboring populations-which exhibit divergent patterns of density dependence due to environmental conditions-also have important differences in recruitment dynamics. Testing against four stock-recruitment models (density independent, linear, Beverton-Holt, and Ricker), populations exhibited ~twofold variation in asymptotic productivity, with no overcompensation following a Beverton-Holt model. Although environmental variables (e.g., temperature, pH, depth, substrate) correlated with population differences in recruitment, they did not improve the predictive power in individual populations. Comparing our patterns of recruitment with classic salmonid case studies revealed that despite differences in the shape and parameters of the curves (i.e., Ricker vs. Beverton-Holt), a maximum stocking density of about five YOY fish/m2 emerged. Higher densities resulted in very marginal increases in recruitment (Beverton-Holt) or reduced recruitment due to overcompensation (Ricker).
Assuntos
Densidade Demográfica , Dinâmica Populacional , Truta , Animais , Truta/crescimento & desenvolvimento , Truta/fisiologia , Pesqueiros , Modelos BiológicosRESUMO
Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reaching N Ì e = 50 and a <9% probability of reaching N Ì e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median N Ì e than unlisted populations, and this was consistent across all taxonomic groups. N Ì e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of N Ì e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.
Assuntos
Anfíbios , Conservação dos Recursos Naturais , Genética Populacional , Mamíferos , Densidade Demográfica , Animais , Anfíbios/genética , Anfíbios/classificação , Mamíferos/genética , Mamíferos/classificação , Fluxo Gênico , Aves/genética , Aves/classificação , Humanos , Endogamia , Deriva Genética , Plantas/genética , Plantas/classificação , Atividades HumanasRESUMO
Predicting the persistence of species under climate change is an increasingly important objective in ecological research and management. However, biotic and abiotic heterogeneity can drive asynchrony in population responses at small spatial scales, complicating species-level assessments. For widely distributed species consisting of many fragmented populations, such as brook trout (Salvelinus fontinalis), understanding the drivers of asynchrony in population dynamics can improve the predictions of range-wide climate impacts. We analyzed the demographic time series from mark-recapture surveys of 11 natural brook trout populations in eastern Canada over 13 years to examine the extent, drivers, and consequences of fine-scale population variation. The focal populations were genetically differentiated, occupied a small area (~25 km2 ) with few human impacts, and experienced similar climate conditions. Recruitment was highly asynchronous, weakly related to climate variables and showed population-specific relationships with other demographic processes, generating diverse population dynamics. In contrast, individual growth was mostly synchronized among populations and driven by a shared positive relationship with stream temperature. Outputs from population-specific models were unrelated to four of the five hypothesized drivers (recruitment, growth, reproductive success, phylogenetic distance), but variation in groundwater inputs strongly influenced stream temperature regimes and stock-recruitment relationships. Finally, population asynchrony generated a portfolio effect that stabilized regional species abundance. Our results demonstrated that population demographics and habitat diversity at microgeographic scales can play a significant role in moderating species responses to climate change. Moreover, we suggest that the absence of human activities within study streams preserved natural habitat variation and contributed to asynchrony in brook trout abundance, while the small study area eased monitoring and increased the likelihood of detecting asynchrony. Therefore, anthropogenic habitat degradation, landscape context, and spatial scale must be considered when developing management strategies to monitor and maintain populations that are diverse, stable, and resilient to climate change.
Assuntos
Água Doce , Rios , Animais , Humanos , Filogenia , Efeitos Antropogênicos , Peixes , Dinâmica PopulacionalRESUMO
The broad scale distribution of population-specific genetic diversity (GDP ) across taxa remains understudied relative to species diversity gradients, despite its relevance for systematic conservation planning. We used nuclear DNA data collected from 3678 vertebrate populations across the Americas to assess the role of environmental and spatial variables in structuring the distribution of GDP , a key component of adaptive potential in the face of environmental change. We specifically assessed non-linear trends for a metric of GDP, expected heterozygosity (HE ), and found more evidence for spatial hotspots and cold spots in HE rather than a strict pattern with latitude. We also detected inconsistent relationships between HE and environmental variables, where only 11 of 30 environmental comparisons among taxa groups were statistically significant at the .05 level, and the shape of significant trends differed substantially across vertebrate groups. Only one of six taxonomic groups, freshwater fishes, consistently showed significant relationships between HE and most (four of five) environmental variables. The remaining groups had statistically significant relationships for either two (amphibians, reptiles), one (birds, mammals), or no variables (anadromous fishes). Our study highlights gaps in the theoretical foundation upon which macrogenetic predictions have been made thus far in the literature, as well as the nuances for assessing broad patterns in GDP among vertebrate groups. Overall, our results suggest a disconnect between patterns of species and genetic diversity, and underscores that large-scale factors affecting genetic diversity may not be the same factors as those shaping taxonomic diversity. Thus, careful spatial and taxonomic-specific considerations are needed for applying macrogenetics to conservation planning.
Assuntos
Biodiversidade , Vertebrados , Animais , Vertebrados/genética , Anfíbios , Mamíferos , América , Peixes , Genética Populacional , Variação Genética/genéticaRESUMO
Sustainable management of exploited populations benefits from integrating demographic and genetic considerations into assessments, as both play a role in determining harvest yields and population persistence. This is especially important in populations subject to size-selective harvest, because size selective harvesting has the potential to result in significant demographic, life-history, and genetic changes. We investigated harvest-induced changes in the effective number of breeders ( N ^ b ) for introduced brook trout populations (Salvelinus fontinalis) in alpine lakes from western Canada. Three populations were subject to 3 years of size-selective harvesting, while three control populations experienced no harvest. The N ^ c decreased consistently across all harvested populations (on average 60.8%) but fluctuated in control populations. There were no consistent changes in N ^ b between control or harvest populations, but one harvest population experienced a decrease in N ^ b of 63.2%. The N ^ b / N ^ c ratio increased consistently across harvest lakes; however we found no evidence of genetic compensation (where variance in reproductive success decreases at lower abundance) based on changes in family evenness ( FE ^ ) and the number of full-sibling families ( N ^ fam ). We found no relationship between FE ^ and N ^ c or between N ^ fam / N ^ c and FE ^ . We posit that change in N ^ b was buffered by constraints on breeding habitat prior to harvest, such that the same number of breeding sites were occupied before and after harvest. These results suggest that effective size in harvested populations may be resilient to considerable changes in Nc in the short-term, but it is still important to monitor exploited populations to assess the risk of inbreeding and ensure their long-term survival.
RESUMO
Salmonids are of immense socio-economic importance in much of the world, but are threatened by climate change. This has generated a substantial literature documenting the effects of climate variation on salmonid productivity in freshwater ecosystems, but there has been no global quantitative synthesis across studies. We conducted a systematic review and meta-analysis to gain quantitative insight into key factors shaping the effects of climate on salmonid productivity, ultimately collecting 1321 correlations from 156 studies, representing 23 species across 24 countries. Fisher's Z was used as the standardized effect size, and a series of weighted mixed-effects models were compared to identify covariates that best explained variation in effects. Patterns in climate effects were complex and were driven by spatial (latitude, elevation), temporal (time-period, age-class), and biological (range, habitat type, anadromy) variation within and among study populations. These trends were often consistent with predictions based on salmonid thermal tolerances. Namely, warming and decreased precipitation tended to reduce productivity when high temperatures challenged upper thermal limits, while opposite patterns were common when cold temperatures limited productivity. Overall, variable climate impacts on salmonids suggest that future declines in some locations may be counterbalanced by gains in others. In particular, we suggest that future warming should (1) increase salmonid productivity at high latitudes and elevations (especially >60° and >1500 m), (2) reduce productivity in populations experiencing hotter and dryer growing season conditions, (3) favor non-native over native salmonids, and (4) impact lentic populations less negatively than lotic ones. These patterns should help conservation and management organizations identify populations most vulnerable to climate change, which can then be prioritized for protective measures. Our framework enables broad inferences about future productivity that can inform decision-making under climate change for salmonids and other taxa, but more widespread, standardized, and hypothesis-driven research is needed to expand current knowledge.
Assuntos
Ecossistema , Salmonidae , Animais , Água Doce , Mudança Climática , Estações do AnoRESUMO
Understanding the drivers of successful species invasions is important for conserving native biodiversity and for mitigating the economic impacts of introduced species. However, whole-genome resolution investigations of the underlying contributions of neutral and adaptive genetic variation in successful introductions are rare. Increased propagule pressure should result in greater neutral genetic variation, while environmental differences should elicit selective pressures on introduced populations, leading to adaptive differentiation. We investigated neutral and adaptive variation among nine introduced brook trout (Salvelinus fontinalis) populations using whole-genome pooled sequencing. The populations inhabit isolated alpine lakes in western Canada and descend from a common source, with an average of ~19 (range of 7-41) generations since introduction. We found some evidence of bottlenecks without recovery, no strong evidence of purifying selection, and little support that varying propagule pressure or differences in local environments shaped observed neutral genetic variation differences. Putative adaptive loci analysis revealed nonconvergent patterns of adaptive differentiation among lakes with minimal putatively adaptive loci (0.001%-0.15%) that did not correspond with tested environmental variables. Our results suggest that (i) introduction success is not always strongly influenced by genetic load; (ii) observed differentiation among introduced populations can be idiosyncratic, population-specific, or stochastic; and (iii) conservatively, in some introduced species, colonization barriers may be overcome by support through one aspect of propagule pressure or benign environmental conditions.
RESUMO
Local support is critical to the success and longevity of fishery management initiatives. Previous research suggests that how resource users perceive ecological changes, explain them, and cope with them, influences local support. The objectives of this study were two-fold. First, we collated local fishers' knowledge to characterize the long-term socio-ecological dynamics of the small-scale fishery of Sainte-Marie Island, in Madagascar. Second, we empirically assessed the individual- and site-level factors influencing support for fishery restrictions. Our results indicate that fishers observed a decline in fish abundance and catch sizes, especially in nearshore areas; many also perceived a reduction in fish sizes and the local disappearance of species. To maintain their catches, most fishers adapted by fishing harder and further offshore. Accordingly, fishers identified increased fishing effort (number of fishers and gear evolution) as the main cause of fishery changes. Collectively, our results highlight that the transition from a subsistence to commercial fishery, and resulting changes in the relationship between people and the fisheries, was an underlying driver of fishery changes. Additionally, we found that gender, membership to local associations, coping mechanisms, and perceptions of ecological health, were all interlinked and significantly associated with conservation-oriented attitudes. Conservation-oriented attitudes, however, were not associated with fishers' willingness to decrease fishing. In the short-term, area-based restrictions could contribute to building support for conservation. In the long-term, addressing the underlying causes of the decline will necessitate collaborations among the various groups involved to progressively build livelihood flexibility. Collectively, our study provides additional insights on the individual- and site-level factors influencing support for fishery restrictions. It also highlights the importance of dialoguing with fishers to ensure that fishery management plans are adapted to the local context.
Assuntos
Pesqueiros , Adaptação Psicológica , Animais , Madagáscar , Resolução de ProblemasRESUMO
Road networks and human density are major factors contributing to habitat fragmentation and loss, isolation of wildlife populations, and reduced genetic diversity. Terrestrial mammals are particularly sensitive to road networks and encroachment by human populations. However, there are limited assessments of the impacts of road networks and human density on population-specific nuclear genetic diversity, and it remains unclear how these impacts are modulated by life-history traits. Using generalized linear mixed models and microsatellite data from 1444 North American terrestrial mammal populations, we show that taxa with large home range sizes, dense populations, and large body sizes had reduced nuclear genetic diversity with increasing road impacts and human density, but the overall influence of life-history traits was generally weak. Instead, we observed a high degree of genus-specific variation in genetic responses to road impacts and human density. Human density negatively affected allelic diversity or heterozygosity more than road networks (13 vs. 5-7 of 25 assessed genera, respectively); increased road networks and human density also positively affected allelic diversity and heterozygosity in 15 and 6-9 genera, respectively. Large-bodied, human-averse species were generally more negatively impacted than small, urban-adapted species. Genus-specific responses to habitat fragmentation by ongoing road development and human encroachment likely depend on the specific capability to (i) navigate roads as either barriers or movement corridors, and (ii) exploit resource-rich urban environments. The nonuniform genetic response to roads and human density highlights the need to implement efforts to mitigate the risk of vehicular collisions, while also facilitating gene flow between populations of particularly vulnerable taxa.
RESUMO
Investigating whether changes within fish populations may result from harvesting requires a comprehensive approach, especially in more data-sparse northern regions. Our study took a three-pronged approach to investigate walleye population change by combining Indigenous knowledge (IK), phenotypic traits, and genomics. We thank Larson et al. (2020) for their critiques of our study; certainly, there are aspects of their critique that are warranted and merit further investigation. However, we argue that their critique is over-stated and misleading, primarily given that (a) one of three prongs of our research, IK, was dismissed in their assessment of our study's conclusions; (b) our Bayesian size-at-age modeling should help to mitigate sample size issues; (c) their re-analysis of our size-at-age data does not actually refute our results; (d) genomic changes that we observed are nascent; (e) the data file that Larson et al. (2020) used for their genomic re-analysis was not correct; and (f) criteria that Larson et al. (2020) use for their genomic re-analysis were not properly justified.
RESUMO
Phenotypic reaction norms are often shaped and constrained by selection and are important for allowing organisms to respond to environmental change. However, selection cannot constrain reaction norms for environmental conditions that populations have not experienced. Consequently, cryptic neutral genetic variation for the reaction norm can accumulate such that a release of phenotypic variation occurs upon exposure to novel14 conditions. Most genomic diversity behaves as if functionally neutral. Therefore, genome-wide diversity metrics may correlate with levels of cryptic genetic variation and, as a result, exhibit a positive relationship with a release of phenotypic variation in novel environments. To test this hypothesis, we conducted translocations of juvenile brook trout (Salvelinus fontinalis) from 12 populations to novel uninhabited ponds that represented a gradient of environmental conditions. We assessed reaction norms for morphological traits (body size and four morphometric relative warps) across pond environmental gradients and evaluated the effect of genome-wide heterozygosity on phenotypic variability. All traits displayed plastic reaction norms. Overall, we found some evidence that a release of phenotypic variation consistent with cryptic genetic variation can occur in novel environmental conditions. However, the extent to which this release correlated with average genome-wide diversity was limited to only one of five traits examined. Our results suggest a limited link between genomic diversity26 and the accumulation of cryptic genetic variation in reaction norms. Similarly, reaction norms were constrained for many of the morphological traits examined. Past conditions may have constrained reaction norms in the putatively novel environments despite significant deviations from contemporary source population habitat. Additionally, as a generalist colonizing species brook trout may exhibit plastic phenotypes across a wide range of environmental conditions.
Assuntos
Adaptação Fisiológica , Interação Gene-Ambiente , Variação Genética , Truta/genética , Animais , Tamanho Corporal , Genoma/imunologiaRESUMO
The extent and rate of harvest-induced genetic changes in natural populations may impact population productivity, recovery, and persistence. While there is substantial evidence for phenotypic changes in harvested fishes, knowledge of genetic change in the wild remains limited, as phenotypic and genetic data are seldom considered in tandem, and the number of generations needed for genetic changes to occur is not well understood. We quantified changes in size-at-age, sex-specific changes in body size, and genomic metrics in three harvested walleye (Sander vitreus) populations and a fourth reference population with low harvest levels over a 15-year period in Mistassini Lake, Quebec. We also collected Indigenous knowledge (IK) surrounding concerns about these populations over time. Using ~9,000 SNPs, genomic metrics included changes in population structure, neutral genomic diversity, effective population size, and signatures of selection. Indigenous knowledge revealed overall reductions in body size and number of fish caught. Smaller body size, a small reduction in size-at-age, nascent changes to population structure (population differentiation within one river and homogenization between two others), and signatures of selection between historical and contemporary samples reflected coupled phenotypic and genomic change in the three harvested populations in both sexes, while no change occurred in the reference population. Sex-specific analyses revealed differences in both body size and genomic metrics but were inconclusive about whether one sex was disproportionately affected. Although alternative explanations cannot be ruled out, our collective results are consistent with the hypothesis that genetic changes associated with harvesting may arise within 1-2.5 generations in long-lived wild fishes. This study thus demonstrates the need to investigate concerns about harvest-induced evolution quickly once they have been raised.
RESUMO
Important variation in the shape and strength of density-dependent growth and mortality is observed across animal populations. Understanding this population variation is critical for predicting density-dependent relationships in natural populations, but comparisons amongst studies are challenging as studies differ in methodologies and in local environmental conditions. Consequently, it is unclear whether: (a) the shape and strength of density-dependent growth and mortality are population-specific; (b) the potential trade-off between density-dependent growth and mortality differs amongst populations; and (c) environmental characteristics can be related to population differences in density-dependent relationships. To elucidate these uncertainties, we manipulated the density (0.3-7 fish/ m2 ) of young-of-the-year brook trout (Salvelinus fontinalis) simultaneously in three neighbouring populations in a field experiment in Newfoundland, Canada. Within each population, our experiment included both spatial (three sites per stream) and temporal (three consecutive summers) replication. We detected temporally consistent population variation in the shape of density-dependent growth (negative linear and negative logarithmic), but not for mortality (positive logarithmic). The strength of density-dependent growth across populations was reduced in sections with a high percentage of boulder substrate, whereas density-dependent mortality increased with increasing flow, water temperature and more acidic pH. Neighbouring populations exhibited different mortality-growth trade-offs: the ratio of mortality-to-growth increased linearly with increasing density at different rates across populations (up to 4-fold differences), but also increased with increasing temperature. Our results are some of the first to demonstrate temporally consistent, population-specific density-dependent relationships and trade-offs at small spatial scales that match the magnitude of interspecific variation observed across the globe. Furthermore, key environmental characteristics explain some of these differences in predictable ways. Such population differences merit further attention in models of density dependence and in science-based management of animal populations.
Assuntos
Ecossistema , Rios , Animais , Canadá , Terra Nova e Labrador , Densidade Demográfica , TrutaRESUMO
Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.
Assuntos
Adaptação Biológica , Evolução Biológica , Fenômenos Ecológicos e Ambientais , Aptidão Genética , Seleção GenéticaRESUMO
Evolutionary biologists tend to approach the study of the natural world within a framework of adaptation, inspired perhaps by the power of natural selection to produce fitness advantages that drive population persistence and biological diversity. In contrast, evolution has rarely been studied through the lens of adaptation's complement, maladaptation. This contrast is surprising because maladaptation is a prevalent feature of evolution: population trait values are rarely distributed optimally; local populations often have lower fitness than imported ones; populations decline; and local and global extinctions are common. Yet we lack a general framework for understanding maladaptation; for instance in terms of distribution, severity, and dynamics. Similar uncertainties apply to the causes of maladaptation. We suggest that incorporating maladaptation-based perspectives into evolutionary biology would facilitate better understanding of the natural world. Approaches within a maladaptation framework might be especially profitable in applied evolution contexts - where reductions in fitness are common. Toward advancing a more balanced study of evolution, here we present a conceptual framework describing causes of maladaptation. As the introductory article for a Special Feature on maladaptation, we also summarize the studies in this Issue, highlighting the causes of maladaptation in each study. We hope that our framework and the papers in this Special Issue will help catalyze the study of maladaptation in applied evolution, supporting greater understanding of evolutionary dynamics in our rapidly changing world.
RESUMO
Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.
RESUMO
Understanding the extent to which captivity generates maladaptation in wild species can inform species recovery programs and elucidate wild population responses to novel environmental change. Although rarely quantified, effective population size (N e ) and genetic diversity should influence the magnitude of plastic and genetic changes manifested in captivity that reduce wild fitness. Sexually dimorphic traits might also mediate consequences of captivity. To evaluate these relationships, we generated >600 full- and half-sibling families from nine wild brook trout populations, reared them for one generation under common, captive environmental conditions and contrasted several fitness-related traits in wild versus captive lines. We found substantial variation in lifetime success (lifetime survival and reproductive success) and life history traits among wild populations after just one captive generation (fourteen- and threefold ranges across populations, respectively). Populations with lower heterozygosity showed lower captive lifetime success, suggesting that captivity generates maladaptation within one generation. Greater male-biased mortality in captivity occurred in populations having disproportionately higher growth rates in males than females. Wild population N e and allelic diversity had little or no influence on captive trait expression and lifetime success. Our results have four conservation implications: (i) Trait values and lifetime success were highly variable across populations following one generation of captivity. (ii) Maladaptation induced by captive breeding might be particularly intense for the very populations practitioners are most interested in conserving, such as those with low heterozygosity. (iii) Maladaptive sex differences in captivity might be associated with population-dependent growth costs of reproduction. (iv) Heterozygosity can be a good indicator of short-term, intraspecific responses to novel environmental change.
RESUMO
Population genetic data from nuclear DNA has yet to be synthesized to allow broad scale comparisons of intraspecific diversity versus species diversity. The MacroPopGen database collates and geo-references vertebrate population genetic data across the Americas from 1,308 nuclear microsatellite DNA studies, 897 species, and 9,090 genetically distinct populations where genetic differentiation (FST) was measured. Caribbean populations were particularly distinguished from North, Central, and South American populations, in having higher differentiation (FST = 0.12 vs. 0.07-0.09) and lower mean numbers of alleles (MNA = 4.11 vs. 4.84-5.54). While mammalian populations had lower MNA (4.86) than anadromous fish, reptiles, amphibians, freshwater fish, and birds (5.34-7.81), mean heterozygosity was largely similar across groups (0.57-0.63). Mean FST was consistently lowest in anadromous fishes (0.06) and birds (0.05) relative to all other groups (0.09-0.11). Significant differences in Family/Genera variance among continental regions or taxonomic groups were also observed. MacroPopGen can be used in many future applications including latitudinal analyses, spatial analyses (e.g. central-margin), taxonomic comparisons, regional assessments of anthropogenic impacts on biodiversity, and conservation of wild populations.
Assuntos
Bases de Dados Genéticas , Repetições de Microssatélites , Vertebrados/genética , Animais , Biodiversidade , Região do Caribe , América Central , América do Norte , América do SulRESUMO
Effective remediation of heavy metal pollution in aquatic systems is desired in many regions, but it requires integrative assessments of sediments, water, and biota that can serve as robust biomonitors. We assessed the effects of a 5-year metal contamination remediation along the Xiangjiang River, China, by comparing concentrations of trace metals in water and surface sediments between 2010-2011 and 2016. We also explored the trace metal biomonitoring potential of a freshwater gastropod (Bellamya aeruginosa). Metal concentrations in water (means and ranges) dropped over time to within permissible limits of drinking water guidelines set by China, USEPA, and WHO in 2016. Although sediment means and ranges of Cd, Pb, Zn, and Mn also diminished with remediation, those for Cr and Cu slightly increased, and all six metals retained concentrations higher than standards set by China. All metals in sediments could also be associated with anthropogenic inputs using a hierarchical clustering analysis, and they generate high potential ecological risks based on several indices, especially for Cd and As. The bio-sediment accumulation factors of all measured trace metals in gastropod soft tissues and shells were lower than 1.0, except for Ca. Trace metal contents in gastropods were positively correlated with those in water and surface sediments for As (soft tissues) and Cr (shells). Collectively, our results do not yet highlight strong beneficial effects of 5-year remediation and clearly illustrate the heavy metal pollution remaining in Xiangjiang River sediment. Additional physical, chemical, and biological measurements should be implemented to improve sediment quality. We further conclude that gastropod soft tissues and shells can be suitable biomonitors of spatial differences in some heavy metals found within river sediments (e.g., As, Cr).
Assuntos
Gastrópodes/química , Metais/análise , Poluentes Químicos da Água/análise , Animais , China , Análise por Conglomerados , Ecotoxicologia/métodos , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Sedimentos Geológicos/análise , Metais/toxicidade , RiosRESUMO
Is a key theory of evolutionary and conservation biology-that loss of genetic diversity can be predicted from population size-on shaky ground? In the face of increasing human-induced species depletion and habitat fragmentation, this question and the study of genetic diversity in small populations are paramount to understanding the limits of species' responses to environmental change and to providing remedies to endangered species conservation. Few empirical studies have investigated to what degree some small populations might be buffered against losses of genetic diversity. Even fewer studies have experimentally tested the potential underlying mechanisms. The study of Schou, Loeschcke, Bechsgaard, Schlotterer, and Kristensen () in this issue of Molecular Ecology is elegant in combining classic common garden experimentation with population genomics on an iconic experimental model species (Drosophila melanogaster). The authors reveal a slower rate of loss of genetic diversity in small populations under varying thermal regimes than theoretically expected and hence an unexpected retention of genetic diversity. They are further able to hone in on a plausible mechanism: associative overdominance, wherein homozygosity of deleterious recessive alleles is especially disfavoured in genomic regions of low recombination. These results contribute to a budding literature on the varying mechanisms underlying genetic diversity in small populations and encourage further such research towards the effective management and conservation of fragmented or endangered populations.