Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biomed Pharmacother ; 176: 116877, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850654

RESUMO

Multiple myeloma (MM) progression is closely dependent on cells in the bone marrow (BM) microenvironment, including fibroblasts (FBs) and immune cells. In their BM niche, MM cells adhere to FBs sustaining immune evasion, drug resistance and the undetectable endurance of tumor cells known as minimal residual disease (MRD). Here, we describe the novel bi-specific designed ankyrin repeat protein (DARPin) α-FAPx4-1BB (MP0310) with FAP-dependent 4-1BB agonistic activity. The α-FAPx4-1BB DARPin simultaneously binds to FAP and 4-1BB overexpressed by activated FBs and immune cells, respectively. Although flow cytometry analysis showed that T and NK cells from MM patients were not activated and did not express 4-1BB, stimulation with daratumumab or elotuzumab, monoclonal antibodies (mAbs) currently used for the treatment of MM, significantly upregulated 4-1BB both in vitro and in MM patients following mAb-based therapy. The mAb-induced 4-1BB overexpression allowed the engagement of α-FAPx4-1BB that acted as a bridge between FAP+FBs and 4-1BB+NK cells. Therefore, α-FAPx4-1BB enhanced both the adhesion of daratumumab-treated NK cells on FBs as well as their activation by improving release of CD107a and perforin, hence MM cell killing via antibody-mediated cell cytotoxicity (ADCC). Interestingly, α-FAPx4-1BB significantly potentiated daratumumab-mediated ADCC in the presence of FBs, suggesting that it may overcome the BM FBs' immunosuppressive effect. Overall, we speculate that treatment with α-FAPx4-1BB may represent a valuable strategy to improve mAb-induced NK cell activity fostering MRD negativity in MM patients through the eradication of latent MRD cells.

2.
Biomedicines ; 11(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37239071

RESUMO

Extracellular vesicles (EVs) have emerged as important players in cell-to-cell communication within the bone marrow (BM) of multiple myeloma (MM) patients, where they mediate several tumor-associated processes. Here, we investigate the contribution of fibroblasts-derived EVs (FBEVs) in supporting BM angiogenesis. We demonstrate that FBEVs' cargo contains several angiogenic cytokines (i.e., VEGF, HGF, and ANG-1) that promote an early over-angiogenic effect independent from EVs uptake. Interestingly, co-culture of endothelial cells from MM patients (MMECs) with FBEVs for 1 or 6 h activates the VEGF/VEGFR2, HGF/HGFR, and ANG-1/Tie2 axis, as well as the mTORC2 and Wnt/ß-catenin pathways, suggesting that the early over-angiogenic effect is a cytokine-mediated process. FBEVs internalization occurs after longer exposure of MMECs to FBEVs (24 h) and induces a late over-angiogenic effect by increasing MMECs migration, chemotaxis, metalloproteases release, and capillarogenesis. FBEVs uptake activates mTORC1, MAPK, SRC, and STAT pathways that promote the release of pro-angiogenic cytokines, further supporting the pro-angiogenic milieu. Overall, our results demonstrate that FBEVs foster MM angiogenesis through dual time-related uptake-independent and uptake-dependent mechanisms that activate different intracellular pathways and transcriptional programs, providing the rationale for designing novel anti-angiogenic strategies.

3.
Cancers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37046651

RESUMO

Angiogenesis represents a pivotal hallmark of multiple myeloma (MM) that correlates to patients' prognosis, overall survival, and drug resistance. Hence, several anti-angiogenic drugs that directly target angiogenic cytokines (i.e., monoclonal antibodies, recombinant molecules) or their cognate receptors (i.e., tyrosine kinase inhibitors) have been developed. Additionally, many standard antimyeloma drugs currently used in clinical practice (i.e., immunomodulatory drugs, bisphosphonates, proteasome inhibitors, alkylating agents, glucocorticoids) show anti-angiogenic effects further supporting the importance of inhibiting angiogenesis from potentiating the antimyeloma activity. Here, we review the most important anti-angiogenic therapies used for the management of MM patients with a particular focus on their pharmacological profile and on their anti-angiogenic effect in vitro and in vivo. Despite the promising perspective, the direct targeting of angiogenic cytokines/receptors did not show a great efficacy in MM patients, suggesting the need to a deeper knowledge of the BM angiogenic niche for the design of novel multi-targeting anti-angiogenic therapies.

4.
Genes Chromosomes Cancer ; 62(7): 377-391, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36562080

RESUMO

Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/genética , Proliferação de Células/genética , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/genética
5.
J Clin Med ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362718

RESUMO

Multiple myeloma (MM) is the second most common hematological malignancy, and despite the introduction of innovative therapies, remains an incurable disease. Identifying early and minimally or non-invasive biomarkers for predicting clinical outcomes and therapeutic responses is an active field of investigation. Malignant plasma cells (PCs) reside in the bone marrow (BM) microenvironment (BMME) which comprises cells (e.g., tumour, immune, stromal cells), components of the extracellular matrix (ECM) and vesicular and non-vesicular (soluble) molecules, all factors that support PCs' survival and proliferation. The interaction between PCs and BM stromal cells (BMSCs), a hallmark of MM progression, is based not only on intercellular interactions but also on autocrine and paracrine circuits mediated by soluble or vesicular components. In fact, PCs and BMSCs secrete various cytokines, including angiogenic cytokines, essential for the formation of specialized niches called "osteoblastic and vascular niches", thus supporting neovascularization and bone disease, vital processes that modulate the pathophysiological PCs-BMME interactions, and ultimately promoting disease progression. Here, we aim to discuss the roles of cytokines and growth factors in pathogenetic pathways in MM and as prognostic and predictive biomarkers. We also discuss the potential of targeted drugs that simultaneously block PCs' proliferation and survival, PCs-BMSCs interactions and BMSCs activity, which may represent the future goal of MM therapy.

6.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806308

RESUMO

Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of "onco-channelopathy". Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells' survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Humanos , Canais Iônicos/metabolismo , Íons/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
7.
Front Med (Lausanne) ; 9: 863150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652080

RESUMO

Background: Takayasu Arteritis (TAK) increases vascular stiffness and arterial resistance. Atherosclerosis leads to similar changes. We investigated possible differences in cardiovascular remodeling between these diseases and whether the differences are correlated with immune cell expression. Methods: Patients with active TAK arteritis were compared with age- and sex-matched atherosclerotic patients (Controls). In a subpopulation of TAK patients, Treg/Th17 cells were measured before (T0) and after 18 months (T18) of infliximab treatment. Echocardiogram, supraaortic Doppler ultrasound, and lymphocytogram were performed in all patients. Histological and immunohistochemical changes of the vessel wall were evaluated as well. Results: TAK patients have increased aortic valve dysfunction and diastolic dysfunction. The degree of dysfunction appears associated with uric acid levels. A significant increase in aortic stiffness was also observed and associated with levels of peripheral T lymphocytes. CD3+ CD4+ cell infiltrates were detected in the vessel wall samples of TAK patients, whose mean percentage of Tregs was lower than Controls at T0, but increased significantly at T18. Opposite behavior was observed for Th17 cells. Finally, TAK patients were found to have an increased risk of atherosclerotic cardiovascular disease (ASCVD). Conclusion: Our data suggest that different pathogenic mechanisms underlie vessel damage, including atherosclerosis, in TAK patients compared with Controls. The increased risk of ASCVD in TAK patients correlates directly with the degree of inflammatory cell infiltration in the vessel wall. Infliximab restores the normal frequency of Tregs/Th17 in TAK patients and allows a possible reduction of steroids and immunosuppressants.

8.
J Clin Med ; 11(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566637

RESUMO

Multiple myeloma (MM) is a plasma cell (PC) malignancy whose development flourishes in the bone marrow microenvironment (BMME). The BMME components' immunoediting may foster MM progression by favoring initial immunotolerance and subsequent tumor cell escape from immune surveillance. In this dynamic process, immune effector cells are silenced and become progressively anergic, thus contributing to explaining the mechanisms of drug resistance in unresponsive and relapsed MM patients. Besides traditional treatments, several new strategies seek to re-establish the immunological balance in the BMME, especially in already-treated MM patients, by targeting key components of the immunoediting process. Immune checkpoints, such as CXCR4, T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), PD-1, and CTLA-4, have been identified as common immunotolerance steps for immunotherapy. B-cell maturation antigen (BCMA), expressed on MMPCs, is a target for CAR-T cell therapy, antibody-(Ab) drug conjugates (ADCs), and bispecific mAbs. Approved anti-CD38 (daratumumab, isatuximab), anti-VLA4 (natalizumab), and anti-SLAMF7 (elotuzumab) mAbs interfere with immunoediting pathways. New experimental drugs currently being evaluated (CD137 blockers, MSC-derived microvesicle blockers, CSF-1/CSF-1R system blockers, and Th17/IL-17/IL-17R blockers) or already approved (denosumab and bisphosphonates) may help slow down immune escape and disease progression. Thus, the identification of deregulated mechanisms may identify novel immunotherapeutic approaches to improve MM patients' outcomes.

9.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454868

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that are not translated into proteins. Nowadays, lncRNAs are gaining importance as key regulators of gene expression and, consequently, of several biological functions in physiological and pathological conditions, including cancer. Here, we point out the role of lncRNAs in the pathogenesis of multiple myeloma (MM). We focus on their ability to regulate the biological processes identified as "hallmarks of cancer" that enable malignant cell transformation, early tumor onset and progression. The aberrant expression of lncRNAs in MM suggests their potential use as clinical biomarkers for diagnosis, patient stratification, and clinical management. Moreover, they represent ideal candidates for therapeutic targeting.

10.
Oral Dis ; 28(4): 1149-1156, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721369

RESUMO

OBJECTIVE: The aim of this study was to test the efficacy of autoantibodies to desmoglein 1 and desmoglein 3 detected by ELISA and indirect immunofluorescence in the diagnosis of oral pemphigus and to correlate the antibody titres with the severity of the disease. MATERIALS AND METHODS: We report a retrospective cohort study of 22 patients with oral pemphigus and 64 controls from a single tertiary centre. Data about histopathological examination, direct immunofluorescence, indirect immunofluorescence and ELISA were analysed. Global validation of ELISA and IIF both alone and combined was established by calculating sensitivity, specificity, accuracy and both positive predictive value and negative predictive value. The relationship between Oral Disease Severity Score values and ELISA titres was analysed using Pearson's coefficient. RESULTS: The best diagnostic performance was observed for anti-desmoglein 3 ELISA. The sensitivity was 75% and specificity 100% and positive predictive value and negative predictive value were 92.5% and accuracy 93.9%. The level of agreement with histopathology + direct immunofluorescence was substantial (k = .758). Anti-desmoglein 3 titres showed a significant correlation with Oral Disease Severity Score (p < .05). CONCLUSIONS: Serological tests are commonly employed during clinical practice as adjunctive tools. Anti-desmoglein 3 ELISA should be considered as a first-instance diagnostic test for oral pemphigus early detection.


Assuntos
Doenças da Boca , Úlceras Orais , Pênfigo , Estomatite , Autoanticorpos , Desmogleína 1 , Desmogleína 3 , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Pênfigo/patologia , Estudos Retrospectivos
11.
J Pathol ; 256(4): 402-413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919276

RESUMO

Multiple myeloma (MM) progression and drug resistance depend on the crosstalk between MM cells and bone marrow (BM) fibroblasts (FBs). During monoclonal gammopathy of undetermined significance (MGUS) to MM transition, MM cell-derived exosomes (EXOs) reprogram the miRNA (miR) profile of FBs, inducing the overexpression miR-23b-3p, miR-27b-3p, miR-125b-5p, miR-214-3p, and miR-5100. Here, we demonstrate that the miR content of MM FB-derived EXOs (FB-EXOs) overlaps the miR profile of parental FBs by overexpressing comparable levels of miR-23b-3p, miR-27b-3p, miR-125b-5p, miR-214-3p, and miR-5100. Recipient MM cells co-cultured with MM FB-EXOs selectively overexpress only miR-214-3p and miR-5100 but not miR-23b-3p, miR-27b-3p, and miR-125b-5p, suggesting a putative selective transfer. MM cells express HOTAIR, TOB1-AS1, and MALAT1 lncRNAs. Transient transfection of MM cells with lnc·siRNAs demonstrates that HOTAIR, TOB1-AS1, and MALAT1 lncRNAs are sponges for miR-23b-3p, miR-27b-3p, and miR-125b-5p. Indeed, lncRNA knockdown significantly increased miR levels in U266 MM cells co-cultured with MM FB-EXOs. Selective miR-214-3p and miR-5100 overexpression modulates MAPK, PI3K/AKT/mTOR, and p53 pathways in MM cells. Interrogation using the DIANA tools algorithm and transient overexpression using miR mimic probes confirmed the involvement of miR-214-3p and miR-5100 and their target genes, PTEN and DUSP16, respectively, in the modulation of these intracellular pathways. Finally, the uptake of EXOs as well as miR-214-3p and miR-5100 overexpression increase MM cell proliferation and resistance to bortezomib-induced apoptosis by switching the balance between pro-/anti-apoptotic proteins. Overall, these data show that MM cells are not simply a container into which EXOs empty their cargo. On the contrary, tumour cells finely neutralize exosomal miRs via lncRNA expression to ensure their survival. © 2021 The Pathological Society of Great Britain and Ireland.


Assuntos
Exossomos , MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Exossomos/patologia , Fibroblastos/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
Cells ; 10(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34831408

RESUMO

Multiple myeloma (MM) progression closely depends on the bidirectional crosstalk between tumor cells and the surrounding microenvironment, which leads to the creation of a tumor supportive niche. Extracellular vesicles (EVs) have emerged as key players in the pathological interplay between the malignant clone and near/distal bone marrow (BM) cells through their biologically active cargo. Here, we describe the role of EVs derived from MM and BM cells in reprogramming the tumor microenvironment and in fostering bone disease, angiogenesis, immunosuppression, drug resistance, and, ultimately, tumor progression. We also examine the emerging role of EVs as new therapeutic agents for the treatment of MM, and their potential use as clinical biomarkers for early diagnosis, disease classification, and therapy monitoring.


Assuntos
Comunicação Celular , Progressão da Doença , Vesículas Extracelulares/metabolismo , Mieloma Múltiplo/patologia , Humanos , Terapia de Imunossupressão , Mieloma Múltiplo/diagnóstico , Neovascularização Patológica/patologia
13.
Cancers (Basel) ; 13(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34359551

RESUMO

Multiple myeloma (MM) is a hematological malignancy characterised by proliferation of clonal plasma cells (PCs) within the bone marrow (BM). Myelomagenesis is a multi-step process which goes from an asymptomatic phase, defined as monoclonal gammopathy of undetermined significance (MGUS), to a smouldering myeloma (SMM) stage, to a final active MM disease, characterised by hypercalcemia, renal failure, bone lesions anemia, and higher risk of infections. Overall, microRNAs (miRNAs) have shown to significantly impact on MM tumorigenesis, as a result of miRNA-dependent modulation of genes involved in pathways known to be crucial for MM pathogenesis and disease progression. We aim to revise the literature related to the role of miRNAs as potential diagnostic and prognostic biomarkers, thus highlighting their key role as novel players within the field of MM and related premalignant conditions.

14.
Sci Rep ; 11(1): 12841, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145306

RESUMO

Antibiotics that inhibit bacterial protein or nucleic acid synthesis and function can exert an off-target action on mitochondria (mitotoxic antibiotics), making actively dividing mammalian cells dependent on uridine and pyruvate supplementation. Based on this rationale, we carried out, for the first time, a randomized pilot study in 55 patients with asymptomatic bacteriuria or positive sperm culture, each treated with a single mitotoxic antibiotic with or without oral supplementation of uridine + pyruvate (Uripyr, Mitobiotix, Italy). The in vivo and ex vivo data show a a 3.4-fold higher value in the differential (before and after the antibiotic treatment) lymphocytes count and a 3.7-fold increase in the percentage of dividing T cells, respectively, in the Uripyr vs the control group. Our findings lay the groundwork to enhance the synergy between antibiotics and the immune system in order to optimize the administration protocols and widen the application potentials of antibiotic therapies as well as to re-evaluate old "forgotten" molecules to fight bacterial infections in the antibiotics resistance era.


Assuntos
Antibacterianos/farmacologia , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ácido Pirúvico/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Uridina/farmacologia , Infecções Bacterianas , Bacteriúria , Biomarcadores , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Mitocôndrias/metabolismo , Projetos Piloto , Linfócitos T/imunologia
15.
Hum Cell ; 34(1): 238-245, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32856169

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors, accounting for around 5% of all soft tissue sarcomas. A better understanding of the pathogenesis of these tumors and the development of effective treatments are needed. In this context, established tumor cell lines can be very informative, as they may be used for in-depth molecular analyses and improvement of treatment strategies. Here, we present the genomic and transcriptomic profiling analysis of a MPNST cell line (BL1391) that was spontaneously established in our laboratory from a primary tumor that had not been exposed to genotoxic treatment. This cell line shows peculiar genetic features, such as a large marker chromosome composed of high-copy number amplifications of regions from chromosomes 1 and 11 with an embedded neocentromere. Moreover, the transcriptome profiling revealed the presence of several fusion transcripts involving the CACHD1, TNMA4, MDM4, and YAP1 genes, all of which map to the amplified regions of the marker. BL1391 could be a useful tool to study genomic amplifications and neocentromere seeding in MPNSTs and to develop new therapeutic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/genética , Proteínas de Membrana/genética , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias do Sistema Nervoso Periférico/genética , Neoplasias do Sistema Nervoso Periférico/patologia , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Amplificação de Genes/genética , Perfilação da Expressão Gênica , Humanos , Proteínas de Sinalização YAP
16.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349317

RESUMO

MicroRNAs (miRNAs, or miRs) are single-strand short non-coding RNAs with a pivotal role in the regulation of physiological- or disease-associated cellular processes. They bind to target miRs modulating gene expression at post-transcriptional levels. Here, we present an overview of miRs deregulation in the pathogenesis of multiple myeloma (MM), and discuss the potential use of miRs/nanocarriers association in clinic. Since miRs can act as oncogenes or tumor suppressors, strategies based on their inhibition and/or replacement represent the new opportunities in cancer therapy. The miRs delivery systems include liposomes, polymers, and exosomes that increase their physical stability and prevent nuclease degradation. Phase I/II clinical trials support the importance of miRs as an innovative therapeutic approach in nanomedicine to prevent cancer progression and drug resistance. Results in clinical practice are promising.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Transferência de Genes , MicroRNAs/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Nanotecnologia , Terapêutica com RNAi , Animais , Progressão da Doença , Exossomos , Regulação Neoplásica da Expressão Gênica , Humanos , Lipídeos/química , Lipossomos , Mieloma Múltiplo/patologia , Nanotecnologia/métodos , Polímeros/química , Terapêutica com RNAi/métodos
17.
Cells ; 9(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936617

RESUMO

Daratumumab (Dara) is the first-in-class human-specific anti-CD38 mAb approved for the treatment of multiple myeloma (MM). Although recent data have demonstrated very promising results in clinical practice and trials, some patients do not achieve a partial response, and ultimately all patients undergo progression. Dara exerts anti-MM activity via antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and immunomodulatory effects. Deregulation of these pleiotropic mechanisms may cause development of Dara resistance. Knowledge of this resistance may improve the therapeutic management of MM patients.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Monoclonais/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Mieloma Múltiplo/patologia , Fagocitose/efeitos dos fármacos
18.
J Clin Med ; 8(7)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323969

RESUMO

Multiple myeloma (MM) is a genetically heterogeneous disease that includes a subgroup of 10-15% of patients facing dismal survival despite the most intensive treatment. Despite improvements in biological knowledge, MM is still an incurable neoplasia, and therapeutic options able to overcome the relapsing/refractory behavior represent an unmet clinical need. The aim of this review is to provide an integrated clinical and biological overview of high-risk MM, discussing novel therapeutic perspectives, targeting the neoplastic clone and its microenvironment. The dissection of the molecular determinants of the aggressive phenotypes and drug-resistance can foster a better tailored clinical management of the high-risk profile and therapy-refractoriness. Among the current clinical difficulties in MM, patients' management by manipulating the tumor niche represents a major challenge. The angiogenesis and the stromal infiltrate constitute pivotal mechanisms of a mutual collaboration between MM and the non-tumoral counterpart. Immuno-modulatory and anti-angiogenic therapy hold great efficacy, but variable and unpredictable responses in high-risk MM. The comprehensive understanding of the genetic heterogeneity and MM high-risk ecosystem enforce a systematic bench-to-bedside approach. Here, we provide a broad outlook of novel druggable targets. We also summarize the existing multi-omics-based risk profiling tools, in order to better select candidates for dual immune/vasculogenesis targeting.

19.
J Pathol ; 247(2): 241-253, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30357841

RESUMO

Aberrant microRNA (miR) expression has an important role in tumour progression, but its involvement in bone marrow fibroblasts of multiple myeloma patients remains undefined. We demonstrate that a specific miR profile in bone marrow fibroblasts parallels the transition from monoclonal gammopathy of undetermined significance (MGUS) to myeloma. Overexpression of miR-27b-3p and miR-214-3p triggers proliferation and apoptosis resistance in myeloma fibroblasts via the FBXW7 and PTEN/AKT/GSK3 pathways, respectively. Transient transfection of miR-27b-3p and miR-214-3p inhibitors demonstrates a cooperation between these two miRNAs in the expression of the anti-apoptotic factor MCL1, suggesting that miR-27b-3p and miR-214-3p negatively regulate myeloma fibroblast apoptosis. Furthermore, myeloma cells modulate miR-27b-3p and miR-214-3p expression in fibroblasts through the release of exosomes. Indeed, tumour cell-derived exosomes induce an overexpression of both miRNAs in MGUS fibroblasts not through a simple transfer mechanism but by de novo synthesis triggered by the transfer of exosomal WWC2 protein that regulates the Hippo pathway. Increased levels of miR-27b-3p and miR-214-3p in MGUS fibroblasts co-cultured with myeloma cell-derived exosomes enhance the expression of fibroblast activation markers αSMA and FAP. These data show that the MGUS-to-myeloma transition entails an aberrant miRNA profile in marrow fibroblasts and highlight a key role of myeloma cells in modifying the bone marrow microenvironment by reprogramming the marrow fibroblasts' behaviour. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Células da Medula Óssea/metabolismo , Exossomos/metabolismo , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Mieloma Múltiplo/metabolismo , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Células da Medula Óssea/patologia , Células Cultivadas , Progressão da Doença , Endopeptidases , Exossomos/genética , Exossomos/patologia , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Feminino , Fibroblastos/patologia , Gelatinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima
20.
Oncoimmunology ; 8(1): e1486949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30546939

RESUMO

Endothelial cells (EC) line the bone marrow microvasculature and are in close contact with CD8+ T cells that come and go across the permeable capillaries. Because of these intimate interactions, we investigated the capacity of EC to act as antigen-presenting cells (APC) and modulate CD8+ T cell activation and proliferation in bone marrow of patients with multiple myeloma (MM) and monoclonal gammopathy of undetermined significance. We found that EC from MM patients show a phenotype of semi-professional APC given that they express low levels of the co-stimulatory molecules CD40, CD80 and CD86, and of the inducible co-stimulator ligand (ICOSL). In addition, they do not undergo the strong switch from immunoproteasome to standard proteasome subunit expression which is typical of mature professional APC such as dendritic cells. EC can trap and present antigen to CD8+ T cells, stimulating a central memory CD8+ T cell population that expresses Foxp3 and produces high amounts of IL-10 and TGF-ß. Another CD8+ T cell population is stimulated by professional APC, produces IFN-γ, and exerts antitumor activity. Thus, two distinct CD8+ T cell populations coexist in the bone marrow of MM patients: the first population is sustained by EC, expresses Foxp3, produces IL-10 and TGF-ß, and exerts pro-tumor activity by negatively regulating the second population. This study adds new insight into the role that EC play in MM biology and describes an additional immune regulatory mechanism that inhibits the development of antitumor immunity and may impair the success of cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA