Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(19): 4207-4214, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35512383

RESUMO

Hematite (α-Fe2O3) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.

2.
J Phys Chem C Nanomater Interfaces ; 125(13): 7329-7336, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33859771

RESUMO

Copper tungstate (CuWO4) is an important semiconductor with a sophisticated and debatable electronic structure that has a direct impact on its chemistry. Using the PAL-XFEL source, we study the electronic dynamics of photoexcited CuWO4. The Cu L3 X-ray absorption spectrum shifts to lower energy upon photoexcitation, which implies that the photoexcitation process from the oxygen valence band to the tungsten conduction band effectively increases the charge density on the Cu atoms. The decay time of this spectral change is 400 fs indicating that the increased charge density exists only for a very short time and relaxes electronically. The initial increased charge density gives rise to a structural change on a time scale longer than 200 ps.

3.
Chem Rev ; 120(9): 4056-4110, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32275144

RESUMO

We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems.

4.
J Synchrotron Radiat ; 27(Pt 4): 979-987, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566007

RESUMO

Angle-dependent 2p3d resonant inelastic X-ray scattering spectra of a LaCoO3 single crystal and a 55 nm LaCoO3 film on a SrTiO3 substrate are presented. Theoretical calculation shows that, with ∼20 meV resolved Co 2p3d resonant inelastic X-ray scattering (RIXS), the excited states of the isotropic 1A1g(Oh) ground state are split by 3d spin-orbit coupling, which can be distinguished via their angular dependence. However, strong self-absorption and saturation effects distort the spectra of the LaCoO3 single crystal and limit the observation of small angular dependence. In contrast, the RIXS on 55 nm LaCoO3 shows less self-absorption effects and preserves the angular dependence of the excited states.

5.
Phys Chem Chem Phys ; 22(5): 2685-2692, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31641716

RESUMO

Hematite, α-Fe2O3, is an important semiconductor for photoelectrochemical water splitting. Its low charge carrier mobility and the presence of midgap states provide favourable conditions for electron-hole recombination, hence affecting the semiconductor's photoelectrochemical efficiency. The nature of the excited state and charge carrier transport in hematite is strongly debated. In order to further understand the fundamental properties of the hematite photoexcited state, we conducted femtosecond 2p (L3) X-ray absorption (XAS) and 2p3d resonant inelastic scattering (RIXS) measurements on hematite thin-films at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). The observed spectral changes and kinetic processes are in agreement with previous 3p XAS reports. The potential additional information that could be acquired from 2p3d RIXS experiments is also discussed.

6.
Phys Chem Chem Phys ; 17(45): 30613-23, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26523538

RESUMO

New molecular beam scattering experiments have been performed to measure the total (elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as 'hydrogen bonded'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA