Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 113(32): 11095-100, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19621918

RESUMO

High yields of the radical cations of oligodiacetylenes have been prepared by photoinduced electron transfer using a positively charged cosensitizer and by pulse radiolysis. The absorption maxima of the oligodiacetylene (ODA) radical cations show a bathochromic shift to the infrared region and a large increase of their lifetimes with chain elongation. Their reactivity toward nucleophiles decreases for longer ODAs, illustrating clearly the stabilizing effect of charge delocalization along the oligomeric chain. This also implies a very low reactivity of ODA radical cations toward trace amounts of water in optoelectronic devices.

2.
J Phys Chem B ; 110(12): 5984-93, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16553407

RESUMO

The electronic structure and optical properties of charged oligofluorenes were studied experimentally and theoretically. Measurements of the optical absorption spectra of charged oligofluorenes in dilute solutions have been performed by using the pulse radiolysis technique. In addition, optical absorption spectra of radical cations and anions in a solid matrix were measured after gamma-irradiation at 77 K. The optical absorption spectra were measured in the range of 440-2100 nm (0.6-2.8 eV) and compared with results from time-dependent density functional theory (TDDFT) calculations. The calculated charge induced deformations and charge distribution do not indicate the occurrence of polaronic effects. The potential energy profiles for rotation around the inter-unit bond show that oligofluorenes are nonplanar in their neutral state, while they tend to more planar structures in their charged state. The optical absorption spectra of charged oligofluorenes are dependent on the angle between neighboring units. TDDFT absorption energies shift to lower values with increasing chain length, which suggests that the charge delocalizes along the oligomer chain.

3.
J Phys Chem B ; 109(12): 5644-52, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16851609

RESUMO

A quantum chemical study of the electronic structure of negatively charged phenylenevinylene (PV) oligomers and methoxy-substituted derivatives is presented. The geometries of the PV oligomers were optimized using density functional theory. The geometry deformations are found to be delocalized along the entire oligomer chain without indication of polaron formation. The optical absorption spectra of the negatively charged PVs were calculated using both time-dependent density functional theory (TDDFT) and the singly excited configuration interaction method with an intermediate neglect of differential overlap reference wave function (INDO/s-CIS). The available experimental optical absorption energies are reproduced by the calculations. Introduction of methoxy substituents reduces the transition energies, while this does not have a strong effect on the charge distribution along the chain. DFT calculations yield a more delocalized excess negative charge than that of INDO/s-CIS calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA