Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1154431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152169

RESUMO

Polyamines (PAs) are ubiquitous low-molecular-weight aliphatic compounds present in all living organisms and essential for cell growth and differentiation. The developmentally regulated and stress-induced copper amine oxidases (CuAOs) oxidize PAs to aminoaldehydes producing hydrogen peroxide (H2O2) and ammonia. The Arabidopsis thaliana CuAOß (AtCuAOß) was previously reported to be involved in stomatal closure and early root protoxylem differentiation induced by the wound-signal MeJA via apoplastic H2O2 production, suggesting a role of this enzyme in water balance, by modulating xylem-dependent water supply and stomata-dependent water loss under stress conditions. Furthermore, AtCuAOß has been shown to mediate early differentiation of root protoxylem induced by leaf wounding, which suggests a whole-plant systemic coordination of water supply and loss through stress-induced stomatal responses and root protoxylem phenotypic plasticity. Among apoplastic ROS generators, the D isoform of the respiratory burst oxidase homolog (RBOH) has been shown to be involved in stress-mediated modulation of stomatal closure as well. In the present study, the specific role of AtCuAOß and RBOHD in local and systemic perception of leaf and root wounding that triggers stomatal closure was investigated at both injury and distal sites exploiting Atcuaoß and rbohd insertional mutants. Data evidenced that AtCuAOß-driven H2O2 production mediates both local and systemic leaf-to-leaf and root-to-leaf responses in relation to stomatal movement, Atcuaoß mutants being completely unresponsive to leaf or root wounding. Instead, RBOHD-driven ROS production contributes only to systemic leaf-to-leaf and root-to-leaf stomatal closure, with rbohd mutants showing partial unresponsiveness in distal, but not local, responses. Overall, data herein reported allow us to hypothesize that RBOHD may act downstream of and cooperate with AtCuAOß in inducing the oxidative burst that leads to systemic wound-triggered stomatal closure.

2.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943906

RESUMO

Plant defence responses to adverse environmental conditions include different stress signalling, allowing plant acclimation and survival. Among these responses one of the most common, immediate, and effective is the modulation of the stomatal aperture, which integrates different transduction pathways involving hydrogen peroxide (H2O2), calcium (Ca2+), nitric oxide (NO), phytohormones and other signalling components. The Arabidopsis thaliana copper amine oxidases ß (AtCuAOß) encodes an apoplastic CuAO expressed in guard cells and root protoxylem tissues which oxidizes polyamines to aminoaldehydes with the production of H2O2 and ammonia. Here, its role in stomatal closure, signalled by the wound-associated phytohormone methyl-jasmonate (MeJA) was explored by pharmacological and genetic approaches. Obtained data show that AtCuAOß tissue-specific expression is induced by MeJA, especially in stomata guard cells. Interestingly, two Atcuaoß T-DNA insertional mutants are unresponsive to this hormone, showing a compromised MeJA-mediated stomatal closure compared to the wild-type (WT) plants. Coherently, Atcuaoß mutants also show compromised H2O2-production in guard cells upon MeJA treatment. Furthermore, the H2O2 scavenger N,N1-dimethylthiourea (DMTU) and the CuAO-specific inhibitor 2-bromoethylamine (2-BrEtA) both reversed the MeJA-induced stomatal closure and the H2O2 production in WT plants. Our data suggest that AtCuAOß is involved in the H2O2 production implicated in MeJA-induced stomatal closure.


Assuntos
Amina Oxidase (contendo Cobre)/genética , Arabidopsis/genética , Reguladores de Crescimento de Plantas/genética , Estômatos de Plantas/genética , Ácido Abscísico/metabolismo , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Amina Oxidase (contendo Cobre)/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Ciclopentanos/metabolismo , Etilaminas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/genética , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Tioureia/análogos & derivados , Tioureia/farmacologia
3.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066274

RESUMO

Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.


Assuntos
Adaptação Fisiológica , Amina Oxidase (contendo Cobre)/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/enzimologia , Estresse Fisiológico , Plantas/imunologia , Plantas/metabolismo
4.
Foods ; 9(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049952

RESUMO

The market of ready-to-eat leafy green salads is experiencing a noticeable growth in Europe. Since they are intended to be consumed without additional treatments, these ready-to-eat products are associated with a high microbiological risk. The aim of this work was to evaluate the microbiological quality and safety of ready-to-eat leafy green salads sold in widespread supermarket chains in Lazio, Italy, on the packaging date during shelf-life and during home-refrigeration. The study also aimed to determine the differences between low-, medium-, and high-cost products. Salmonella spp. and L. monocytogenes were chosen as safety indicators as specified by European regulations while total aerobic mesophilic bacteria and Escherichia coli were chosen as quality indicators as suggested by national guidelines. Analyses were performed following the ISO standards and in parallel for the evaluation of total aerobic mesophilic bacteria, with an alternative colorimetric system, the Micro Biological Survey method, in order to propose a simple, affordable and accurate alternative for testing the microbiological quality of products, especially suitable for small and medium enterprises and on-site analyses. The study revealed high, unsatisfactory, total bacterial loads in all analyzed samples on the packaging date and expiry date and a very high prevalence of Salmonella spp. (67%) regardless of the selected varieties and cost categories; L. monocytogenes was not recovered aligning with the results obtained in other studies.

5.
Plants (Basel) ; 9(2)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075218

RESUMO

The Arabidopsis gene AtCuAOß (At4g14940) encodes an apoplastic copper amine oxidase (CuAO) highly expressed in guard cells of leaves and flowers and in root vascular tissues, especially in protoxylem and metaxylem precursors, where its expression is strongly induced by the wound signal methyl jasmonate (MeJA). The hydrogen peroxide (H2O2) derived by the AtCuAOß-driven oxidation of the substrate putrescine (Put), mediates the MeJA-induced early root protoxylem differentiation. Considering that early root protoxylem maturation was also induced by both exogenous Put and leaf wounding through a signaling pathway involving H2O2, in the present study we investigated the role of AtCuAOß in the leaf wounding-induced early protoxylem differentiation in combination with Put treatment. Quantitative and tissue specific analysis of AtCuAOß gene expression by RT-qPCR and promoter::green fluorescent protein-ß-glucuronidase fusion analysis revealed that wounding of the cotiledonary leaf induced AtCuAOß gene expression which was particularly evident in root vascular tissues. AtCuAOß loss-of-function mutants were unresponsive to the injury, not showing altered phenotype upon wounding in comparison to wild type seedlings. Exogenous Put and wounding did not show synergy in inducing early root protoxylem maturation, suggesting their involvement in a shared signaling pathway.

6.
Plant Physiol Biochem ; 147: 141-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31862580

RESUMO

Copper-containing amine oxidases (CuAOs) catalyze polyamines (PAs) terminal oxidation producing ammonium, an aminoaldehyde and hydrogen peroxide (H2O2). Plant CuAOs are induced by stress-related hormones, methyl-jasmonate (MeJA), abscisic acid (ABA) and salicylic acid (SA). In the Arabidopsis genome, eight genes encoding CuAOs have been identified. Here, a comprehensive investigation of the expression pattern of four genes encoding AtCuAOs from the α and γ phylogenetic subfamilies, the two peroxisomal AtCuAOα2 (At1g31690) and AtCuAOα3 (At1g31710) and the two apoplastic AtCuAOγ1 (At1g62810) and AtCuAOγ2 (At3g43670), has been carried out by RT-qPCR and promoter::green fluorescent protein-ß-glucuronidase fusion (GFP-GUS). Expression in hydathodes of new emerging leaves (AtCuAOγ1 and AtCuAOγ2) and/or cotyledons (AtCuAOα2, AtCuAOγ1 and AtCuAOγ2) as well as in vascular tissues of new emerging leaves and in cortical root cells at the division/elongation transition zone (AtCuAOγ1), columella cells (AtCuAOγ2) or hypocotyl and root (AtCuAOα3) was identified. Quantitative and tissue-specific gene expression analysis performed by RT-qPCR and GUS-staining in 5- and 7-day-old seedlings under stress conditions or after treatments with hormones or PAs, revealed that all four AtCuAOs were induced during dehydration recovery, wounding, treatment with indoleacetic acid (IAA) and putrescine (Put). AtCuAOα2, AtCuAOα3, AtCuAOγ1 and AtCuAOγ2 expression in vascular tissues and hydathodes involved in water supply and/or loss, along with a dehydration-recovery dependent gene expression, would suggest a role in water balance homeostasis. Moreover, occurrence in zones where an auxin maximum has been observed along with an IAA-induced alteration of expression profiles, support a role in tissue maturation and xylem differentiation events.


Assuntos
Amina Oxidase (contendo Cobre) , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Putrescina/farmacologia , Estresse Fisiológico/genética
7.
Plants (Basel) ; 8(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226798

RESUMO

Plant copper amine oxidases (CuAOs) are involved in wound healing, defense against pathogens, methyl-jasmonate-induced protoxylem differentiation, and abscisic acid (ABA)-induced stomatal closure. In the present study, we investigated the role of the Arabidopsis thaliana CuAOδ (AtCuAOδ; At4g12290) in the ABA-mediated stomatal closure by genetic and pharmacological approaches. Obtained data show that AtCuAOδ is up-regulated by ABA and that two Atcuaoδ T-DNA insertional mutants are less responsive to this hormone, showing reduced ABA-mediated stomatal closure and H2O2 accumulation in guard cells as compared to the wild-type (WT) plants. Furthermore, CuAO inhibitors, as well as the hydrogen peroxide (H2O2) scavenger N,N1-dimethylthiourea, reversed most of the ABA-induced stomatal closure in WT plants. Consistently, AtCuAOδ over-expressing transgenic plants display a constitutively increased stomatal closure and increased H2O2 production compared to WT plants. Our data suggest that AtCuAOδ is involved in the H2O2 production related to ABA-induced stomatal closure.

8.
Plants (Basel) ; 7(4)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518030

RESUMO

Root architecture and xylem phenotypic plasticity influence crop productivity by affecting water and nutrient uptake, especially under those environmental stress, which limit water supply or imply excessive water losses. Xylem maturation depends on coordinated events of cell wall lignification and developmental programmed cell death (PCD), which could both be triggered by developmental- and/or stress-driven hydrogen peroxide (H2O2) production. Here, the effect of wounding of the cotyledonary leaf on root protoxylem maturation was explored in Arabidopsis thaliana by analysis under Laser Scanning Confocal Microscope (LSCM). Leaf wounding induced early root protoxylem maturation within 3 days from the injury, as after this time protoxylem position was found closer to the tip. The effect of leaf wounding on protoxylem maturation was independent from root growth or meristem size, that did not change after wounding. A strong H2O2 accumulation was detected in root protoxylem 6 h after leaf wounding. Furthermore, the H2O2 trap N,N¹-dimethylthiourea (DMTU) reversed wound-induced early protoxylem maturation, confirming the need for H2O2 production in this signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA