Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Lab Anim (NY) ; 53(7): 181-185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886565

RESUMO

For the preparation of embryo transfer recipients, surgically vasectomized mice are commonly used, generated by procedures associated with pain and discomfort. Sterile transgenic strains provide a nonsurgical replacement, but their maintenance requires breeding and genotyping procedures. We have previously reported the use of naturally sterile STUSB6F1 hybrids for the production of embryo transfer recipients and found the behavior of these recipients to be indistinguishable from those generated by vasectomized males. The method provides two substantial 3R impacts: refinement (when compared with surgical vasectomy) and reduction in breeding procedures (compared with sterile transgenic lines). Despite initial promise, the 3Rs impact of this innovation was limited by difficulties in breeding the parental STUS/Fore strain, which precluded the wider distribution of the sterile hybrid. The value of a 3R initiative is only as good as the uptake in the community. Here we, thus, select a different naturally sterile hybrid, generated from strains that are widely available: the B6SPRTF1 hybrid between C57BL/6J and Mus spretus. We first confirmed its sterility by sperm counting and testes weight and then trialed the recovery of cryopreserved embryos and germplasm within three UK facilities. Distribution of sperm for the generation of these hybrids by in vitro fertilization was found to be the most robust distribution method and avoided the need to maintain a live M. spretus colony. We then tested the suitability of B6SPRTF1 sterile hybrids for the generation of embryo transfer recipients at these same three UK facilities and found the hybrids to be suitable when compared with surgical vasectomized mice and a sterile transgenic strain. In conclusion, the potential 3Rs impact of this method was confirmed by the ease of distribution and the utility of sterile B6SPRTF1 hybrids at independent production facilities.


Assuntos
Transferência Embrionária , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Transferência Embrionária/veterinária , Transferência Embrionária/métodos , Feminino , Hibridização Genética , Pseudogravidez/genética , Pseudogravidez/veterinária , Criopreservação/veterinária , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Vasectomia/veterinária , Vasectomia/métodos
2.
Genes (Basel) ; 13(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36292777

RESUMO

WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and ArabidopsisWRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop.


Assuntos
Arabidopsis , Musa , Musa/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Arabidopsis/genética , Aminoácidos/genética , Zinco/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32612987

RESUMO

During the latest years, human infertility worsened all over the world and is nowadays reputed as a global public health issue. As a consequence, the adoption of Assisted Reproductive Technologies (ARTs) such as In Vitro Fertilization (IVF) is undergoing an impressive increase. In this context, one of the most promising strategies is the innovative adoption of extra-physiological materials for advanced sperm preparation methods. Here, by using a murine model, the addition of Graphene Oxide (GO) at a specific concentration has demonstrated to increase the spermatozoa fertilizing ability in an IVF assay, finding that 0.5 µg/ml GO addition to sperm suspensions before IVF is able to increase both the number of fertilized oocytes and embryos created with a healthy offspring given by Embryo Transplantation (ET). In addition, GO treatment has been found more effective than that carried out with methyl-ß-cyclodextrin, which represents the gold standard in promoting in vitro fertility of mice spermatozoa. Subsequent biochemical characterization of its interaction with male gametes has been additionally performed. As a result, it was found that GO exerts its positive effect by extracting cholesterol from membranes, without affecting the integrity of microdomains and thus preserving the sperm functions. In conclusion, GO improves IVF outcomes in vitro and in vivo, defining new perspectives for innovative strategies in the treatment of human infertility.

5.
Theriogenology ; 119: 52-59, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982136

RESUMO

The mouse is widely used for biomedical research and an increasing number of genetically altered models are currently generated, therefore centralized repositories are essentials to secure the important mouse strains that have been developed. We have previously reported that spermatozoa of wild type and mutant strains frozen using standard laboratory protocols can be transported in dry ice (-79 °C) for 7 days and safely stored in a -80 °C freezer for up to two years. The objective of this new study was to compare the effects of the freezing techniques using LN2 or -80 °C freezer on fertility of frozen-thawed mouse spermatozoa. After thawing, sperm fertility was comparable (P > 0,05) between the LN2 and the -80 °C samples for at least 1 year. Furthermore, we showed that it is possible to freeze and store mouse semen directly at -80 °C and eventually transfer it to LN2 irrespective of storage time. This study is relevant because it shows for the first time that mouse spermatozoa can be efficiently frozen and stored at -80 °C with no use of liquid nitrogen for a long period of time. A new, simple, efficient and flexible, liquid nitrogen free, method was developed for freezing and maintaining spermatozoa of wild type and mutant C57BL/6N lines. Lines on this genetic background are used in collaborative research infrastructures for systematic phenotyping, e.g. the International Mouse Phenotyping Consortium (IMPC) and therefore largely cryopreserved in repositories like EMMA/Infrafrontier. The importance of this finding will be especially useful for small laboratories with no or limited access to liquid nitrogen and for laboratories generating many mouse mutant lines by CRISPR/Cas9 who do not want to saturate the limited space of a LN2 tank, using a more accessible -80 °C freezer. This study underlines, once more, that mouse spermatozoa are very resistant and can be frozen, transported, shared and stored at -80 °C for a long time without a significant loss of viability. This new approach simplifies the freezing process and facilitates the long term storage of mouse spermatozoa at -80 °C, always allowing the transfer to LN2 for indefinite storage without noticeable detrimental effects.


Assuntos
Criopreservação/veterinária , Espermatozoides/fisiologia , Animais , Sobrevivência Celular , Criopreservação/métodos , Transferência Embrionária/veterinária , Embrião de Mamíferos , Feminino , Congelamento , Masculino , Camundongos , Gravidez , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Temperatura
6.
Theriogenology ; 107: 41-49, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128700

RESUMO

Maintaining mouse stocks as frozen materials offers both ethical and economical advantages over live animal breeding if the lines are not actively used. The European Mouse Mutant Archive (EMMA) promotes the archiving and distribution of important mouse models for biomedical research through the cryopreservation of their embryos and gametes. Embryo freezing in liquid nitrogen (LN2) at -196 °C has traditionally been the method of choice for archiving mouse lines. However, sperm freezing is emerging as a more convenient alternative due to the application of innovative cryopreservation and recovery protocols. In addition, frozen spermatozoa are less sensitive to post-freezing temperature fluctuations. We have previously reported that spermatozoa frozen using standard laboratory protocols can be safely stored in a -80 °C freezer or in dry ice (-79 °C) for at least seven days. We now report the extension of this period of maintenance at -80 °C up to two 2 years both for wild type and mutant strains, indicating that once frozen, mouse spermatozoa are quite resistant and can be transported, shared and stored at -80 °C for a long time without a significant loss of viability. The importance of this finding will be especially relevant for small laboratories with no constant access to liquid nitrogen and for labs generating many mouse mutant lines by CRISPR/Cas9 who do not want to saturate the limited space of a LN2 tank, using a more accessible -80 °C freezer.


Assuntos
Criopreservação/veterinária , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Animais , Sobrevivência Celular , Criopreservação/métodos , Congelamento , Ciência dos Animais de Laboratório , Masculino , Camundongos , Preservação do Sêmen/métodos , Manejo de Espécimes , Motilidade dos Espermatozoides , Fatores de Tempo
7.
Mamm Genome ; 28(7-8): 383-387, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28726007

RESUMO

Cryopreservation is seen as a key aspect of good colony management which supports the drive towards improvements in animal care and the implementation of the 3Rs. However, following the advent of gene editing technologies, the generation of new mouse models is quicker and cheaper than ever before. This has led some to question the future value of biobanks around the world. In the following commentary, we argue that the need to cryopreserve mouse strains and distribute them from well-funded repositories is as strong as it has ever been. Repositories are not simply archives for unwanted mouse strains. Biobanks distribute identical QC verified mouse strains to the community and eliminate the need to recreate mice. They provide a check point in the development of mouse strains that minimises genetic drift and breeding failures. What is more, cryopreservation makes resource sharing easier, cheaper and improves animal care by eliminating the need for live animal shipments.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Mutação , Animais , Animais Geneticamente Modificados , Bancos de Espécimes Biológicos/normas , Criopreservação/métodos , Criopreservação/normas , Genótipo , Humanos , Fenótipo , Especificidade da Espécie , Terminologia como Assunto
8.
Theriogenology ; 96: 49-57, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532839

RESUMO

Disseminating mouse stocks as frozen materials offers both ethical and logistical advantages over live animal shipment, minimizing the welfare issues and avoiding some of the complex custom regulations that are associated with live animal transportation. Embryo freezing in liquid nitrogen (LN2) at -196 °C has traditionally been the method of choice for archiving mouse lines. However, spermatozoa freezing is emerging as a more convenient alternative due to the application of innovative cryopreservation and recovery protocols. In addition, frozen spermatozoa are less sensitive to post-freezing temperature fluctuations. Here we demonstrated that spermatozoa frozen using standard laboratory protocols can be safely stored in dry ice (-79 °C) for at least seven days. The protocol we report here is robust and has been validated in a multi-centric study involving mouse spermatozoa samples exchanged between five European Mouse Mutant Archive (EMMA) nodes. Furthermore, following shipment on dry ice the spermatozoa can be returned to LN2 for long term storage without any noticeable detrimental effect. This protocol permits frozen spermatozoa to be shared and shipped in dry ice between biorepositories, networks and scientific institutions at low cost, using common courier companies, while avoiding the complexities, risks and hazards associated with using a traditional LN2 dry-shipper.


Assuntos
Criopreservação , Gelo-Seco , Congelamento , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Animais , Masculino , Camundongos , Preservação do Sêmen/métodos , Manejo de Espécimes , Motilidade dos Espermatozoides , Fatores de Tempo
9.
BMC Cell Biol ; 17(1): 30, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27496052

RESUMO

BACKGROUND: Karyotypic integrity is essential for the successful germline transmission of alleles mutated in embryonic stem (ES) cells. Classical methods for the identification of aneuploidy involve cytological analyses that are both time consuming and require rare expertise to identify mouse chromosomes. RESULTS: As part of the International Mouse Phenotyping Consortium, we gathered data from over 1,500 ES cell clones and found that the germline transmission (GLT) efficiency of clones is compromised when over 50 % of cells harbour chromosome number abnormalities. In JM8 cells, chromosomes 1, 8, 11 or Y displayed copy number variation most frequently, whilst the remainder generally remain unchanged. We developed protocols employing droplet digital polymerase chain reaction (ddPCR) to accurately quantify the copy number of these four chromosomes, allowing efficient triage of ES clones prior to microinjection. We verified that assessments of aneuploidy, and thus decisions regarding the suitability of clones for microinjection, were concordant between classical cytological and ddPCR-based methods. Finally, we improved the method to include assay multiplexing so that two unstable chromosomes are counted simultaneously (and independently) in one reaction, to enhance throughput and further reduce the cost. CONCLUSION: We validated a PCR-based method as an alternative to classical karyotype analysis. This technique enables laboratories that are non-specialist, or work with large numbers of clones, to precisely screen ES cells for the most common aneuploidies prior to microinjection to ensure the highest level of germline transmission potential. The application of this method allows early exclusion of aneuploid ES cell clones in the ES cell to mouse conversion process, thus improving the chances of obtaining germline transmission and reducing the number of animals used in failed microinjection attempts. This method can be applied to any other experiments that require accurate analysis of the genome for copy number variation (CNV).


Assuntos
Aneuploidia , Cariotipagem/métodos , Metáfase , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Reação em Cadeia da Polimerase/métodos , Animais , Células Cultivadas , Cromossomos de Mamíferos/metabolismo , Variações do Número de Cópias de DNA , Células Germinativas , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Genet ; 48(8): 912-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376238

RESUMO

Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations.


Assuntos
Animais não Endogâmicos/genética , Mapeamento Cromossômico , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Herança Multifatorial/genética , Locos de Características Quantitativas/genética , Animais , Genótipo , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA