Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RNA ; 29(6): 777-789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810234

RESUMO

N6-methyladenosine (m6A) in mRNA regulates almost every stage in the mRNA life cycle, and the development of methodologies for the high-throughput detection of methylated sites in mRNA using m6A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIPSeq) or m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) have revolutionized the m6A research field. Both of these methods are based on immunoprecipitation of fragmented mRNA. However, it is well documented that antibodies often have nonspecific activities, thus verification of identified m6A sites using an antibody-independent method would be highly desirable. We mapped and quantified the m6A site in the chicken ß-actin zipcode based on the data from chicken embryo MeRIPSeq results and our RNA-Epimodification Detection and Base-Recognition (RedBaron) antibody-independent assay. We also demonstrated that methylation of this site in the ß-actin zipcode enhances ZBP1 binding in vitro, while methylation of a nearby adenosine abolishes binding. This suggests that m6A may play a role in regulating localized translation of ß-actin mRNA, and the ability of m6A to enhance or inhibit a reader protein's RNA binding highlights the importance of m6A detection at nucleotide resolution.


Assuntos
Actinas , Galinhas , Animais , Embrião de Galinha , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Actinas/genética , Galinhas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Anticorpos , Nucleotídeos/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 1006101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263323

RESUMO

Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bicalutamide, enzalutamide, darolutamide). A major limitation of current ADTs is they often remain effective for limited durations after which patients commonly progress to a lethal and incurable form of PCa, called castration-resistant prostate cancer (CRPC) where the AR continues to orchestrate pro-oncogenic signalling. Indeed, the increasing numbers of ADT-related treatment-emergent neuroendocrine-like prostate cancers (NePC), which lack AR and are thus insensitive to ADT, represents a major therapeutic challenge. There is therefore an urgent need to better understand the mechanisms of AR action in hormone dependent disease and the progression to CRPC, to enable the development of new approaches to prevent, reverse or delay ADT-resistance. Interestingly the AR regulates distinct transcriptional networks in hormone dependent and CRPC, and this appears to be related to the aberrant function of key AR-epigenetic coregulator enzymes including the lysine demethylase 1 (LSD1/KDM1A). In this review we summarize the current best status of anti-androgen clinical trials, the potential for novel combination therapies and we explore recent advances in the development of novel epigenetic targeted therapies that may be relevant to prevent or reverse disease progression in patients with advanced CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Antagonistas de Androgênios/uso terapêutico , Lisina , Androgênios/uso terapêutico , Histona Desmetilases
3.
Cancers (Basel) ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291932

RESUMO

Prostate cancer (PCa) is a leading cause of cancer-related deaths and is driven by aberrant androgen receptor (AR) signalling. For this reason, androgen deprivation therapies (ADTs) that suppress androgen-induced PCa progression either by preventing androgen biosynthesis or via AR signalling inhibition (ARSi) are common treatments. The N6-methyladenosine (m6A) RNA modification is involved in regulating mRNA expression, translation, and alternative splicing, and through these mechanisms has been implicated in cancer development and progression. RNA-m6A is dynamically regulated by the METTL3 RNA methyltransferase complex and the FTO and ALKBH5 demethylases. While there is evidence supporting a role for aberrant METTL3 in many cancer types, including localised PCa, the wider contribution of METTL3, and by inference m6A, in androgen signalling in PCa remains poorly understood. Therefore, the aim of this study was to investigate the expression of METTL3 in PCa patients and study the clinical and functional relevance of METTL3 in PCa. It was found that METTL3 is aberrantly expressed in PCa patient samples and that siRNA-mediated METTL3 knockdown or METTL3-pharmacological inhibition significantly alters the basal and androgen-regulated transcriptome in PCa, which supports targeting m6A as a novel approach to modulate androgen signalling in PCa.

4.
Nat Commun ; 13(1): 1127, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236848

RESUMO

The methyltransferase complex (m6A writer), which catalyzes the deposition of N6-methyladenosine (m6A) in mRNAs, is highly conserved across most eukaryotic organisms, but its components and interactions between them are still far from fully understood. Here, using in vivo interaction proteomics, two HAKAI-interacting zinc finger proteins, HIZ1 and HIZ2, are discovered as components of the Arabidopsis m6A writer complex. HAKAI is required for the interaction between HIZ1 and MTA (mRNA adenosine methylase A). Whilst HIZ1 knockout plants have normal levels of m6A, plants in which it is overexpressed show reduced methylation and decreased lateral root formation. Mutant plants lacking HIZ2 are viable but have an 85% reduction in m6A abundance and show severe developmental defects. Our findings suggest that HIZ2 is likely the plant equivalent of ZC3H13 (Flacc) of the metazoan m6A-METTL Associated Complex.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Redação , Dedos de Zinco
5.
Front Genet ; 13: 1096071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733939

RESUMO

N6-methyladenosine (m6A) is the most abundant internal mRNA modification and is dynamically regulated through distinct protein complexes that methylate, demethylate, and/or interpret the m6A modification. These proteins, and the m6A modification, are involved in the regulation of gene expression, RNA stability, splicing and translation. Given its role in these crucial processes, m6A has been implicated in many diseases, including in cancer development and progression. Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in men and recent studies support a role for m6A in PCa. Despite this, the literature currently lacks an integrated analysis of the expression of key components of the m6A RNA methyltransferase complex, both in PCa patients and in well-established cell line models. For this reason, this study used immunohistochemistry and functional studies to investigate the mechanistic and clinical significance of the METTL3, METTL14, WTAP and CBLL1 components of the m6A methyltransferase complex in PCa specimens and cell lines. Expression of METTL3 and CBLL1, but not METTL14 and WTAP, was associated with poorer PCa patient outcomes. Expression of METTL3, METTL14, WTAP and CBLL1 was higher in PCa cells compared with non-malignant prostate cells, with the highest expression seen in castrate-sensitive, androgen-responsive PCa cells. Moreover, in PCa cell lines, expression of METTL3 and WTAP was found to be androgen-regulated. To investigate the mechanistic role(s) of the m6A methyltransferase complex in PCa cells, short hairpin RNA (shRNA)-mediated knockdown coupled with next generation sequencing was used to determine the transcriptome-wide roles of METTL3, the catalytic subunit of the m6A methyltransferase complex. Functional depletion of METTL3 resulted in upregulation of the androgen receptor (AR), together with 134 AR-regulated genes. METTL3 knockdown also resulted in altered splicing, and enrichment of cell cycle, DNA repair and metabolic pathways. Collectively, this study identified the functional and clinical significance of four essential m6A complex components in PCa patient specimens and cell lines for the first time. Further studies are now warranted to determine the potential therapeutic relevance of METTL3 inhibitors in development to treat leukaemia to benefit patients with PCa.

6.
Proc Natl Acad Sci U S A ; 117(35): 21785-21795, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817553

RESUMO

In Arabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introduces N6-methyladenosine (m6A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that an MTA-deficient mutant (mta) has decreased levels of microRNAs (miRNAs) but accumulates primary miRNA transcripts (pri-miRNAs). Moreover, pri-miRNAs are methylated by MTA, and RNA structure probing analysis reveals a decrease in secondary structure within stem-loop regions of these transcripts in mta mutant plants. We demonstrate interaction between MTA and both RNA Polymerase II and TOUGH (TGH), a plant protein needed for early steps of miRNA biogenesis. Both MTA and TGH are necessary for efficient colocalization of the Microprocessor components Dicer-like 1 (DCL1) and Hyponastic Leaves 1 (HYL1) with RNA Polymerase II. We propose that secondary structure of miRNA precursors induced by their MTA-dependent m6A methylation status, together with direct interactions between MTA and TGH, influence the recruitment of Microprocessor to plant pri-miRNAs. Therefore, the lack of MTA in mta mutant plants disturbs pri-miRNA processing and leads to the decrease in miRNA accumulation. Furthermore, our findings reveal that reduced miR393b levels likely contributes to the impaired auxin response phenotypes of mta mutant plants.


Assuntos
Metiltransferases/metabolismo , MicroRNAs/biossíntese , MicroRNAs/metabolismo , Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Metilação , Metiltransferases/fisiologia , MicroRNAs/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
7.
Cell Rep ; 25(5): 1146-1157.e3, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380407

RESUMO

N6-methyladenosine (m6A) is a dynamic, reversible, covalently modified ribonucleotide that occurs predominantly toward 3' ends of eukaryotic mRNAs and is essential for their proper function and regulation. In Arabidopsis thaliana, many RNAs contain at least one m6A site, yet the transcriptome-wide function of m6A remains mostly unknown. Here, we show that many m6A-modified mRNAs in Arabidopsis have reduced abundance in the absence of this mark. The decrease in abundance is due to transcript destabilization caused by cleavage occurring 4 or 5 nt directly upstream of unmodified m6A sites. Importantly, we also find that, upon agriculturally relevant salt treatment, m6A is dynamically deposited on and stabilizes transcripts encoding proteins required for salt and osmotic stress response. Overall, our findings reveal that m6A generally acts as a stabilizing mark through inhibition of site-specific cleavage in plant transcriptomes, and this mechanism is required for proper regulation of the salt-stress-responsive transcriptome.


Assuntos
Adenosina/análogos & derivados , Arabidopsis/genética , Estabilidade de RNA/genética , Ribonucleotídeos/metabolismo , Adenosina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Sequência Conservada/genética , Exorribonucleases/metabolismo , Metilação/efeitos dos fármacos , Fases de Leitura Aberta/genética , Proteínas de Plantas/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/genética
8.
Mol Plant Pathol ; 19(1): 104-115, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27756102

RESUMO

In order to cope with pathogens, plants have evolved sophisticated mechanisms to sense pathogenic attacks and to induce defence responses. The N-acyl-homoserine lactone (AHL)-mediated quorum sensing in bacteria regulates diverse physiological processes, including those involved in pathogenicity. In this work, we study the interactions between AHL-producing transgenic tobacco plants and Pseudomonas syringae pv. tabaci 11528 (P. syringae 11528). Both a reduced incidence of disease and decrease in the growth of P. syringae 11528 were observed in AHL-producing plants compared with wild-type plants. The present data indicate that plant-produced AHLs enhance disease resistance against this pathogen. Subsequent RNA-sequencing analysis showed that the exogenous addition of AHLs up-regulated the expression of P. syringae 11528 genes for flagella production. Expression levels of plant defence genes in AHL-producing and wild-type plants were determined by quantitative real-time polymerase chain reaction. These data showed that plant-produced AHLs activated a wide spectrum of defence responses in plants following inoculation, including the oxidative burst, hypersensitive response, cell wall strengthening, and the production of certain metabolites. These results demonstrate that exogenous AHLs alter the gene expression patterns of pathogens, and plant-produced AHLs either directly or indirectly enhance plant local immunity during the early stage of plant infection.


Assuntos
Acil-Butirolactonas/farmacologia , Flagelos/metabolismo , Nicotiana/imunologia , Nicotiana/microbiologia , Pseudomonas syringae/metabolismo , Contagem de Células , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/imunologia , Flagelos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/genética , Pseudomonas syringae/crescimento & desenvolvimento , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
9.
New Phytol ; 215(1): 157-172, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28503769

RESUMO

N6-adenosine methylation (m6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m6 A writer proteins in Arabidopsis thaliana. The components required for m6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Metiltransferases/fisiologia , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Methods Mol Biol ; 1562: 79-87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28349455

RESUMO

The base-modified nucleotide, N 6-methyladenosine, is a relatively abundant modification found in the mRNA of most higher eukaryotes. Methylation levels can change dependent upon environmental conditions, cell differentiation state, or following knockdown of members of the methylase complex, and it is often useful to directly measure and compare N 6-methyladenosine levels between samples. Two dimensional chromatography of radiolabeled nucleotides, following specific nuclease treatments, provides a robust, sensitive, and reproducible assay for this modification.


Assuntos
Adenosina/análogos & derivados , Cromatografia em Camada Fina , RNA Mensageiro/genética , Cromatografia em Camada Fina/métodos , Epigênese Genética , Hidrólise , Marcação por Isótopo , Metilação , RNA Mensageiro/química , Endonucleases Específicas para DNA e RNA de Cadeia Simples , Transcriptoma
11.
Placenta ; 56: 79-85, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28238455

RESUMO

The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models.


Assuntos
Androgênios/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Placentação/fisiologia , Animais , Feminino , Humanos , Neoplasias/patologia , Neovascularização Patológica/patologia , Gravidez
12.
Nature ; 540(7632): 301-304, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27919081

RESUMO

N6-methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) and is decoded by YTH domain proteins. The mammalian mRNA m6A methylosome is a complex of nuclear proteins that includes METTL3 (methyltransferase-like 3), METTL14, WTAP (Wilms tumour 1-associated protein) and KIAA1429. Drosophila has corresponding homologues named Ime4 and KAR4 (Inducer of meiosis 4 and Karyogamy protein 4), and Female-lethal (2)d (Fl(2)d) and Virilizer (Vir). In Drosophila, fl(2)d and vir are required for sex-dependent regulation of alternative splicing of the sex determination factor Sex lethal (Sxl). However, the functions of m6A in introns in the regulation of alternative splicing remain uncertain. Here we show that m6A is absent in the mRNA of Drosophila lacking Ime4. In contrast to mouse and plant knockout models, Drosophila Ime4-null mutants remain viable, though flightless, and show a sex bias towards maleness. This is because m6A is required for female-specific alternative splicing of Sxl, which determines female physiognomy, but also translationally represses male-specific lethal 2 (msl-2) to prevent dosage compensation in females. We further show that the m6A reader protein YT521-B decodes m6A in the sex-specifically spliced intron of Sxl, as its absence phenocopies Ime4 mutants. Loss of m6A also affects alternative splicing of additional genes, predominantly in the 5' untranslated region, and has global effects on the expression of metabolic genes. The requirement of m6A and its reader YT521-B for female-specific Sxl alternative splicing reveals that this hitherto enigmatic mRNA modification constitutes an ancient and specific mechanism to adjust levels of gene expression.


Assuntos
Adenosina/análogos & derivados , Processamento Alternativo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Caracteres Sexuais , Processos de Determinação Sexual/genética , Regiões 5' não Traduzidas/genética , Adenosina/metabolismo , Animais , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Feminino , Íntrons/genética , Masculino , Metiltransferases/deficiência , Metiltransferases/genética , Metiltransferases/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica
13.
PLoS One ; 10(7): e0132090, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186436

RESUMO

Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO's (Fat Mass Obesity) N6-methyl-adenosine (m6A) deaminase activity, thus suggesting a link between obesity-associated diseases and the presence of m6A in mRNA. Another catalyst of the sudden rise in mRNA methylation research was the release of mRNA methylomes for human, mouse and Saccharomyces cerevisiae. However, the molecular function, or functions of this mRNA 'epimark' remain to be discovered. There is supportive evidence that m6A could be a mark for mRNA degradation due to its binding to YTH domain proteins, and consequently being chaperoned to P bodies. Nonetheless, only a subpopulation of the methylome was found binding to YTHDF2 in HeLa cells.The model organism Saccharomyces cerevisiae, has only one YTH domain protein (Pho92, Mrb1), which targets PHO4 transcripts for degradation under phosphate starvation. However, mRNA methylation is only found under meiosis inducing conditions, and PHO4 transcripts are apparently non-methylated. In this paper we set out to investigate if m6A could function alternatively to being a degradation mark in S. cerevisiae; we also sought to test whether it can be induced under non-standard sporulation conditions. We find a positive association between the presence of m6A and message translatability. We also find m6A induction following prolonged rapamycin treatment.


Assuntos
Meiose/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Análise por Conglomerados , Técnicas de Inativação de Genes , Células HeLa , Humanos , Metilação/efeitos dos fármacos , Fenótipo , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
14.
Curr Opin Plant Biol ; 27: 17-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26048078

RESUMO

The most prevalent internal modification of plant messenger RNAs, N(6)-methyladenosine (m(6)A), was first discovered in the 1970s, then largely forgotten. However, the impact of modifications to eukaryote mRNA, collectively known as the epitranscriptome, has recently attracted renewed attention. mRNA methylation is required for normal Arabidopsis development and the first methylation maps reveal that thousands of Arabidopsis mRNAs are methylated. Arabidopsis is likely to be a model of wide utility in understanding the biological impacts of the epitranscriptome. We review recent progress and look ahead with questions awaiting answers to reveal an entire layer of gene regulation that has until recently been overlooked.


Assuntos
Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , RNA Mensageiro/genética , Arabidopsis/metabolismo , Metilação , RNA Mensageiro/metabolismo , Transcriptoma
15.
PLoS One ; 6(3): e17814, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21423774

RESUMO

Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea.A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs.Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter ß-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue.This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.


Assuntos
Brassicaceae/genética , Brassicaceae/metabolismo , Cádmio/metabolismo , Duplicação Gênica/genética , Proteínas de Plantas/genética , Zinco/metabolismo , Arabidopsis/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas/genética , Glucuronidase/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Sequências de Repetição em Tandem/genética
16.
New Phytol ; 189(2): 409-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21058953

RESUMO

Noccaea caerulescens (formerly Thlaspi caerulescens) is a widely studied metal hyperaccumulator. However, molecular genetic studies are challenging in this species because of its vernal-obligate biennial life cycle of 7-9months. Here, we describe the development of genetically stable, faster cycling lines of N. caerulescens which are nonvernal-obligate. A total of 5500 M(0) seeds from Saint Laurent Le Minier (France) were subjected to fast neutron mutagenesis. Following vernalization of young plants, 79% of plants survived to maturity. In all, 80,000 M(2) lines were screened for flowering in the absence of vernalization. Floral initials were observed in 35 lines, with nine flowering in <12wk. Two lines (A2 and A7) were selfed to the M(4) generation. Floral initials were observed 66 and 87d after sowing (DAS) in A2 and A7, respectively. Silicle development occurred for all A2 and for most A7 at 92 and 123 DAS, respectively. Floral or silicle development was not observed in wild-type (WT) plants. Leaf zinc (Zn) concentration was similar in WT, A2 and A7 lines. These lines should facilitate future genetic studies of this remarkable species. Seed is publicly available through the European Arabidopsis Stock Centre (NASC).


Assuntos
Cruzamento/métodos , Nêutrons Rápidos , Congelamento , Mutagênese/genética , Thlaspi/crescimento & desenvolvimento , Thlaspi/genética , Cruzamentos Genéticos , Metais Pesados/metabolismo , Folhas de Planta/metabolismo
17.
Nucleic Acids Res ; 38(16): 5327-35, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20421205

RESUMO

N(6)-Methyladenosine (m(6)A) is a modified base present in the mRNA of all higher eukaryotes and in Saccharomyces cerevisiae, where there is an increase in m(6)A levels during sporulation. The methyltransferase, Ime4, is responsible for this modification and has a role in the initiation of meiosis. However, neither the function, nor the extent of distribution of this nucleotide modification is established. We demonstrate that in S. cerevisiae, substantial levels of internal adenosine methylation are present in the GpA context in mRNA from sporulating cells, which is consistent with the preferred methylation consensus of higher eukaryotes. Based upon our quantification data, every second transcript could contain one m(6)A during meiosis. As methylation is distributed across all mRNA size ranges, it is likely that m(6)A is not limited to a small population of messages. We developed a new antibody based method for identifying m(6)A containing messages, and using this method the transcripts of three key, early regulators of meiosis, IME1, IME2 and IME4 itself, were identified as being methylated. The position of m(6)A in IME2 was narrowed down to a region in the 3'-end. Methylation of these and other targets suggests mechanisms by which IME4 could control developmental choices leading to meiosis.


Assuntos
Adenosina/análogos & derivados , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Adenosina/análise , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/química , RNA Mensageiro/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/fisiologia
18.
Phytochemistry ; 70(8): 1003-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19539963

RESUMO

Ripening is a tightly controlled and developmentally regulated process involving networks of genes, and metabolites that result in dramatic changes in fruit colour, texture and flavour. Molecular and genetic analysis in tomato has revealed a series of regulatory genes involved in fruit development and ripening, including MADS box and SPB box transcription factors and genes involved in ethylene synthesis, signalling and response. Volatile metabolites represent a significant part of the plant metabolome, playing an important role in plant signalling, defence strategies and probably in regulatory mechanisms. They also play an important role in fruit quality. In order to acquire a better insight into the biochemical and genetic control of flavour compound generation and links between these metabolites and the central regulators of ripening, five pleiotropic mutant tomato lines were subjected to volatile metabolite profiling in comparison with wild-type Ailsa Craig. One hundred and seventeen volatile compounds were identified and quantified using SPME (Solid Phase Microextraction) headspace extraction followed by Gas Chromatography-Mass Spectrometry (GC-MS) and the data were subjected to multivariate comparative analysis. We find that the different mutants each produce distinct volatile profiles during ripening. Through principal component analysis the volatiles most dramatically affected are those derived from fatty-acids. The results are consistent with the suggestion that specific isoforms of lipoxygenase located in the plastids and the enzymes that provide precursors and downstream metabolites play a key role in determining volatile composition.


Assuntos
Lipoxigenase/metabolismo , Solanum lycopersicum , Sequência de Bases , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Mutação , Paladar/fisiologia , Volatilização
19.
Transgenic Res ; 17(5): 985-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18594998

RESUMO

Fluorescent protein labelling technologies enable dynamic protein actions to be imaged in living cells and can also be used in conjunction with other methods such as Forster resonance energy transfer and biomolecular fluorescence complementation. In this report, we describe the generation of a series of 23 novel GATEWAY-compatible vectors based on pGreenII and pDH51 backbones with the latest fluorescent protein tags (Cerulean, EGFP and Venus) and the choice of three in planta selection markers. These vectors can be obtained from the Nottingham Arabidopsis Stock Centre (N9819-N9846) and should be a powerful tool box for transgenic research in plants.


Assuntos
Vetores Genéticos , Proteínas Luminescentes/genética , Plantas/genética , Transformação Genética , Transferência de Energia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
20.
Plant Cell Rep ; 27(8): 1377-84, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18536921

RESUMO

We report the integration of a type II restriction-methylase, mFokI, into the tobacco chloroplast genome and we demonstrate that the introduced enzyme effectively directs the methylation of its target sequence in vivo and does not affect maternal inheritance. We further report the transformation of tobacco with an E. coli dcm methylase targeted to plastids and we demonstrate efficient cytosine methylation of the plastid genome. Both adenosine methylation of FokI sites and cytosine methylation of dcm sites appeared phenotypically neutral. The ability to tolerate such plastid genome methylation is a pre-requisite for a proposed plant transgene containment system. In such a system, a chloroplast located, maternally inherited restriction methylase would provide protection from a nuclear-encoded, plastid targeted restriction endonuclease. As plastids are not paternally inherited in most crop species, pollen from such plants would carry the endonuclease transgene but not the corresponding methylase; the consequence of this should be containment of all nuclear transgenes, as pollination will only be viable in crosses to the appropriate transplastomic maternal background.


Assuntos
Metilação de DNA , DNA de Cloroplastos/genética , Nicotiana/genética , Transgenes/genética , DNA de Cloroplastos/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Vetores Genéticos , Modelos Genéticos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA