Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(25): 36663-36684, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750272

RESUMO

The Orne River, a tributary of the Moselle River, was highly impacted by industrial activities for more than one century. Land use along the Orne River is highly contrasted, with local specificity from its source to its junction with the Moselle River. The intense industrial activity left behind tons of steelmaking wastes (SMW) on the land surface and within the Orne riverbed. To assess the sources of particulate Zn and Pb transported as suspended sediment in the Orne River, different sets of samples from likely Zn- and Pb-bearing particle sources within the Orne watershed were collected. Three sets of samples were taken from potential sources representing detrital, urban, and inherited industrial particles. Mineralogy, element contents, and Zn and Pb isotope compositions were obtained to characterize and reveal the fingerprint of each set of samples. Soil samples were collected on distinct geomorphological areas characterized by different soil types and land uses. They all display detrital minerals assigned to the geological background. Urban dusts and steelmaking residues display specific mineral phases (sulfates and iron oxides, respectively). Element compositions present strong discrepancies between the distinct sets of samples. SMWs are particularly enriched in Fe, Zn, and Pb. Concerning isotopic composition, SMWs exhibit δ66Zn values ranging from - 0.67 to 1.66‰. Urban samples display δ66Zn values between - 0.11 and 0.13‰, and soils present δ66Zn values between - 0.24 and 0.47‰. The 206Pb/204Pb ratio was estimated to range from 17.550 to 18.807 for soils, from 17.973 to 18.219 for urban samples, and from 18.313 to 18.826 for SMWs. For each of the three sets of samples (soils, urban, industrial), variations of geochemical fingerprint were observed. For soils, the relatively large variations of Zn and Pb isotopic compositions were attributed to distinct land use and the contribution of atmospheric deposition. For industrial samples, the variations were more intense and may be attributed either to distinct industrial processes in the production of pig iron or to distinct furnace-flume treatment modes. The three sets of samples (urban, industrial, and detrital) could be distinguished based on Zn and Pb contents and isotopes. Finally, this study not only highlighted the sources that released particulate Zn and Pb into the Orne River system, it also demonstrated that urban particles are well defined in terms of Zn and Pb isotopic signatures, and those isotopic signatures could be extrapolated to other case studies.


Assuntos
Monitoramento Ambiental , Chumbo , Rios , Zinco , Chumbo/análise , França , Zinco/análise , Rios/química , Poluentes Químicos da Água/análise , Solo/química
2.
Sci Total Environ ; 913: 169764, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176565

RESUMO

Plant phytoliths, which represent the main pool of silica (Si) in the form of hydrous Si oxide, are capable of providing valuable information on different aspect of environmental issues including paleo-environmental reconstruction and agricultural sustainability. Phytoliths may have different chemical composition, which, in turn, affects their preservation in soils ad impacts terrestrial cycle of the occluded elements including micro-nutrients and environmental toxicants. Yet, in contrast to sizable work devoted to phytoliths formation, dissolution and physico-chemical properties, the mechanisms that control total (major and trace) elemental composition and the impact that various elements exert on phytolith reactivity and preservation in soils remains poorly known. In order to fil this gap in knowledge, here we combined two different approaches - analytical trace element geochemistry and experimental physical chemistry. First, we assessed full elemental composition of phytoliths from different plants via measuring major and trace elements in 9 samples of grasses collected in northern Eurasia during different seasons, 18 grasses from Siberian regions, and 4 typical Si-concentrating plants (horsetail, larch, elm and tree fern). We further assessed the dissolution rates of phytoliths exhibiting drastically different concentrations of trace metals. In the European grasses, the variations of phytolith chemical composition among species were highly superior to the variations across vegetative season. Compared to European samples, Siberian grass phytoliths were impoverished in Ca and Sr, exhibited similar concentrations of Li, B, Na, Mg, K, V, Zn, Ni, Mo, As, Ba, and U, and were strongly enriched (x 100-1000) in lithogenic elements (trivalent and tetravalent hydrolysates), P, Mn, Fe and divalent metals. Overall, the variations in elemental composition between different species of the same region were lower compared to variations of the same species from distant regions. The main factors controlling phytoliths elemental composition are the far-range atmospheric (dust) transfer, climatic conditions (humidity), and, in a lesser degree, local lithology and anthropogenic pollution. Despite significant, up to 3 orders of magnitude, difference in TE composition of grass and other plant phytoliths, the dissolution rates of grass phytoliths measured in this study were similar, within the experimental uncertainty, to those of other plants studied in former works. Therefore, elemental composition of phytoliths has relatively minor impact on their preservation in soils.

3.
Environ Sci Pollut Res Int ; 25(12): 11281-11294, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28624948

RESUMO

Industrialization has left large surfaces of contaminated soils, which may act as a source of pollution for contiguous ecosystems, either terrestrial or aquatic. When polluted sites are recolonized by plants, dispersion of leaf litter might represent a non-negligible source of contaminants, especially metals. To evaluate the risks associated to contaminated leaf litter dispersion in aquatic ecosystems, we first measured the dynamics of metal loss from leaf litter during a 48-h experimental leaching. We used aspen (Populus tremula L.), a common tree species on these polluted sites, and collected leaf litter on three polluted sites (settling pond of a former steel mill) and three control sites situated in the same geographic area. Then, toxicity tests were carried out on individuals of a key detritivore species widely used in ecotoxicology tests, Gammarus fossarum (Crustacea, Amphipoda), with uncontaminated and contaminated leaf litter leachates, using a battery of biomarkers selected for their sensitivity to metallic stress. Leaf litters collected on polluted sites exhibited not only significantly higher cadmium and zinc concentrations but also lower lignin contents. All leaf litters released high amounts of chemical elements during the leaching process, especially potassium and magnesium, and, in a lesser extent, phosphorus, calcium, and trace metals (copper, cadmium, and zinc but not lead). Toxicity tests revealed that the most important toxic effects measured on G. fossarum were due to leaf litter leachates by themselves, whatever the origin of litter (from polluted or control sites), confirming the toxicity of such substances, probably due to their high content in phenolic compounds. Small additional toxic effects of leachates from contaminated leaf litters were only evidenced on gammarid lipid peroxidation, indicating that contaminated leaf litter leachates might be slightly more toxic than uncontaminated ones, but in a very reduced manner. Further studies will be required to verify if these patterns are generalizable to other species and to investigate the effects of contaminated leaf litter ingestion by consumers on aquatic food webs. Nevertheless, our results do not permit to exclude potential chronic effects of an exposure to contaminated leaf litter leachates in aquatic ecosystems.


Assuntos
Cádmio/análise , Ecotoxicologia/métodos , Metais/análise , Fósforo/análise , Folhas de Planta/química , Zinco/análise , Anfípodes/química , Anfípodes/efeitos dos fármacos , Animais , Ecossistema , Água Doce , Metais/química , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA