Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 242024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38140959

RESUMO

Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.


Assuntos
Metschnikowia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Botrytis/genética , Botrytis/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Ferro/metabolismo
2.
Data Brief ; 49: 109394, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37496519

RESUMO

Pichia kluyveri strain APC 11.10 B was isolated from apple bark in Switzerland and exhibited strong antagonistic activity against plant pathogenic fungi in vitro (e.g., Botrytis, Fusarium or Monilinia isolates). In order to identify the mechanisms underlying this antagonism, we have sequenced the genome of this isolate by long- and short-read sequencing technologies. The sequence data were de novo assembled into nine scaffolds and a fully resolved circularized mitogenome. The total genome size was 10.9 Mbp and 7451 potential open reading frames (ORFs) and 202 tRNA genes were predicted. In comparison to two P. kluyveri genomes deposited at the NCBI (of strains X31-10 and CBA6002), the APC 11.10 B strain seemed to represent a hybrid because backmapping of sequencing reads resulted in a high rate of heterozygous and structural variants in the nuclear genome (this was not observed for the mitochondrial genome). The P. kluyveri (APC 11.10 B) draft genome represents a first step and resource for genome mining, comparative and functional genomics (e.g., identifying the biocontrol mode of action), and evolutionary studies. Since the genus Pichia comprises many biotechnologically relevant yeasts, the genome data may be used in a variety of fields and disciplines.

3.
Appl Environ Microbiol ; 89(7): e0088423, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37404169

RESUMO

The genus Hanseniaspora is characterized by some of the smallest genomes among budding yeasts. These fungi are primarily found on plant surfaces and in fermented products and represent promising biocontrol agents against notorious fungal plant pathogens. In this work, we identify pantothenate auxotrophy of a Hanseniaspora meyeri isolate that shows strong antagonism against the plant pathogen Fusarium oxysporum. Furthermore, strong biocontrol activity in vitro required both pantothenate and biotin in the growth medium. We show that the H. meyeri isolate APC 12.1 can obtain the vitamin from plants and other fungi. The underlying reason for the auxotrophy is the lack of two key pantothenate biosynthesis genes, but six genes encoding putative pantothenate transporters are present in the genome. By constructing and using a Saccharomyces cerevisiae reporter strain, we identified one Hanseniaspora transporter that conferred pantothenate uptake activity to S. cerevisiae. Pantothenate auxotrophy is rare and has been described in only a few bacteria and in S. cerevisiae strains that were isolated from sake. Such auxotrophic strains may seem an unexpected and unlikely choice as potential biocontrol agents, but they may be particularly competitive in their ecological niche and their specific growth requirements are an inherent biocontainment strategy preventing uncontrolled growth in the environment. Auxotrophic strains, such as the H. meyeri isolate APC 12.1, may thus represent a promising strategy for developing biocontrol agents that will be easier to register than prototrophic strains, which are normally used for such applications. IMPORTANCE As a precursor of the essential coenzyme A (CoA), pantothenate is present in all organisms. Plants, bacteria, and fungi are known to synthesize this vitamin, while animals must obtain it through their diet. Pantothenate auxotrophy has not been described in naturally occurring, environmental fungi and is an unexpected property for an antagonistic yeast. Here, we report that yeasts from the genus Hanseniaspora lack key enzymes for pantothenate biosynthesis and identify a transporter responsible for the acquisition of pantothenate from the environment. Hanseniaspora isolates are strong antagonists of fungal plant pathogens. Their pantothenate auxotrophy is a natural biocontainment feature that could make such isolates interesting candidates for new biocontrol approaches and allow easier registration as plant protection agents than prototrophic strains.


Assuntos
Biotina , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Vitaminas
4.
Microbiol Spectr ; : e0529922, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943135

RESUMO

Fungicide applications in agriculture and medicine can promote the evolution of resistant, pathogenic fungi, which is a growing problem for disease management in both settings. Nonpathogenic mycobiota are also exposed to fungicides, may become tolerant, and could turn into agricultural or medical problems, for example, due to climate change or in immunocompromised individuals. However, quantitative data about fungicide sensitivity of environmental fungi is mostly lacking. Aureobasidium species are widely distributed and frequently isolated yeast-like fungi. One species, A. pullulans, is used as a biocontrol agent, but is also encountered in clinical samples, regularly. Here, we compared 16 clinical and 30 agricultural Aureobasidium isolates based on whole-genome data and by sensitivity testing with the 3 fungicides captan, cyprodinil, and difenoconazole. Our phylogenetic analyses determined that 7 of the 16 clinical isolates did not belong to the species A. pullulans. These isolates clustered with other Aureobasidium species, including A. melanogenum, a recently separated species that expresses virulence traits that are mostly lacking in A. pullulans. Interestingly, the clinical Aureobasidium isolates were significantly more fungicide sensitive than many isolates from agricultural samples, which implies selection for fungicide tolerance of non-target fungi in agricultural ecosystems. IMPORTANCE Environmental microbiota are regularly found in clinical samples and can cause disease, in particular, in immunocompromised individuals. Organisms of the genus Aureobasidium belonging to this group are highly abundant, and some species are even described as pathogens. Many A. pullulans isolates from agricultural samples are tolerant to different fungicides, and it seems inevitable that such strains will eventually appear in the clinics. Selection for fungicide tolerance would be particularly worrisome for species A. melanogenum, which is also found in the environment and exhibits virulence traits. Based on our observation and the strains tested here, clinical Aureobasidium isolates are still fungicide sensitive. We, therefore, suggest monitoring fungicide sensitivity in species, such as A. pullulans and A. melanogenum, and to consider the development of fungicide tolerance in the evaluation process of fungicides.

5.
Data Brief ; 40: 107799, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35071701

RESUMO

Cyberlindnera sargentensis strain SHA 17.2, isolated from a Swiss soil sample, exhibited strong antagonistic activity against several plant pathogenic fungi in vitro and was highly competitive against other yeasts in soil. As a basis for identifying the mechanisms underlying its strong antagonistic activity, we have sequenced the genome of C. sargentensis (SHA 17.2) by long- and short read sequencing, de novo assembled them into seven contigs/chromosomes and a mitogenome (total genome size 11.4 Mbp), and annotated 5455 genes. This high-quality genome is the reference for transcriptome and proteome analyses aiming at elucidating the mode of action of C. sargentensis against fungal plant pathogens. It will thus serve as a resource for identifying potential biocontrol genes and performing comparative genomics analyses of yeast genomes.

6.
Microb Cell ; 8(8): 184-202, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34395586

RESUMO

Aureobasidium pullulans is an extremotolerant, cosmopolitan yeast-like fungus that successfully colonises vastly different ecological niches. The species is widely used in biotechnology and successfully applied as a commercial biocontrol agent against postharvest diseases and fireblight. However, the exact mechanisms that are responsible for its antagonistic activity against diverse plant pathogens are not known at the molecular level. Thus, it is difficult to optimise and improve the biocontrol applications of this species. As a foundation for elucidating biocontrol mechanisms, we have de novo assembled a high-quality reference genome of a strongly antagonistic A. pullulans strain, performed dual RNA-seq experiments, and analysed proteins secreted during the interaction with the plant pathogen Fusarium oxysporum. Based on the genome annotation, potential biocontrol genes were predicted to encode secreted hydrolases or to be part of secondary metabolite clusters (e.g., NRPS-like, NRPS, T1PKS, terpene, and ß-lactone clusters). Transcriptome and secretome analyses defined a subset of 79 A. pullulans genes (among the 10,925 annotated genes) that were transcriptionally upregulated or exclusively detected at the protein level during the competition with F. oxysporum. These potential biocontrol genes comprised predicted secreted hydrolases such as glycosylases, esterases, and proteases, as well as genes encoding enzymes, which are predicted to be involved in the synthesis of secondary metabolites. This study highlights the value of a sequential approach starting with genome mining and consecutive transcriptome and secretome analyses in order to identify a limited number of potential target genes for detailed, functional analyses.

7.
Antibiotics (Basel) ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942551

RESUMO

Many yeasts have demonstrated intrinsic insensitivity to certain antifungal agents. Unlike the fungicide resistance of medically relevant yeasts, which is highly undesirable, intrinsic insensitivity to fungicides in antagonistic yeasts intended for use as biocontrol agents may be of great value. Understanding how frequently tolerance exists in naturally occurring yeasts and their underlying molecular mechanisms is important for exploring the potential of biocontrol yeasts and fungicide combinations for plant protection. Here, yeasts were isolated from various environmental samples in the presence of different fungicides (or without fungicide as a control) and identified by sequencing the internal transcribed spacer (ITS) region or through matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Among 376 isolates, 47 taxa were identified, and Aureobasidium pullulans was the most frequently isolated yeast. The baseline sensitivity of this yeast was established for 30 isolates from different environmental samples in vitro to captan, cyprodinil, and difenoconazole. For these isolates, the baseline minimum inhibitory concentration (MIC50) values for all the fungicides were higher than the concentrations used for the control of plant pathogenic fungi. For some isolates, there was no growth inhibition at concentrations as high as 300 µg/mL for captan and 128 µg/mL for cyprodinil. This information provides insight into the presence of resistance among naturally occurring yeasts and allows the choice of strains for further mechanistic analyses and the assessment of A. pullulans for novel applications in combination with chemical agents and as part of integrated plant-protection strategies.

8.
Front Microbiol ; 11: 1810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849417

RESUMO

Soil-borne diseases cause significant yield losses worldwide, are difficult to treat and often only limited options for disease management are available. It has long been known that compost amendments, which are routinely applied in organic and integrated farming as a part of good agricultural practice to close nutrient cycles, can convey a protective effect. Yet, the targeted use of composts against soil-borne diseases is hampered by the unpredictability of the efficacy. Several studies have identified and/or isolated beneficial microorganisms (i.e., bacteria, oomycetes, and fungi) from disease suppressive composts capable of suppressing pathogens (e.g., Pythium and Fusarium) in various crops (e.g., tomato, lettuce, and cucumber), and some of them have been developed into commercial products. Yet, there is growing evidence that synthetic or complex microbial consortia can be more effective in controlling diseases than single strains, but the underlying molecular mechanisms are poorly understood. Currently, a major bottleneck concerns the lack of functional assays to identify the most potent beneficial microorganisms and/or key microbial consortia from complex soil and compost microbiomes, which can harbor tens of thousands of species. This focused review describes microorganisms, which have been isolated from, amended to or found to be abundant in disease-suppressive composts and for which a beneficial effect has been documented. We point out opportunities to increasingly harness compost microbiomes for plant protection through an integrated systems approach that combines the power of functional assays to isolate biocontrol and plant growth promoting strains and further prioritize them, with functional genomics approaches that have been successfully applied in other fields of microbiome research. These include detailed metagenomics studies (i.e., amplicon and shotgun sequencing) to achieve a better understanding of the complex system compost and to identify members of taxa enriched in suppressive composts. Whole-genome sequencing and complete assembly of key isolates and their subsequent functional profiling can elucidate the mechanisms of action of biocontrol strains. Integrating the benefits of these approaches will bring the long-term goals of employing microorganisms for a sustainable control of plant pathogens and developing reliable diagnostic assays to assess the suppressiveness of composts within reach.

9.
Bio Protoc ; 10(3): e3518, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654743

RESUMO

Yeasts such as Aureobasidium pullulans are unicellular fungi that occur in all environments and play important roles in biotechnology, medicine, food and beverage production, research, and agriculture. In the latter, yeasts are explored as biocontrol agents for the control of plant pathogenic fungi (e.g., Botrytis cinerea, Fusarium sp.); mainly on flowers and fruits. Eventually, such yeasts must be evaluated under field conditions, but such trials require a lot of time and resources and are often difficult to control. Experimental systems of intermediate complexity, between in vitro Petri dish assays and field trials, are thus required. For pre- and post-harvest applications, competition assays on fruits are reproducible, economical and thus widely used. Here, we present a general protocol for competition assays with fruits that can be adapted depending on the biocontrol yeast, plant pathogen, type of assay or fruit to be studied.

10.
World J Microbiol Biotechnol ; 35(10): 154, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576429

RESUMO

Yeasts occur in all environments and have been described as potent antagonists of various plant pathogens. Due to their antagonistic ability, undemanding cultivation requirements, and limited biosafety concerns, many of these unicellular fungi have been considered for biocontrol applications. Here, we review the fundamental research on the mechanisms (e.g., competition, enzyme secretion, toxin production, volatiles, mycoparasitism, induction of resistance) by which biocontrol yeasts exert their activity as plant protection agents. In a second part, we focus on five yeast species (Candida oleophila, Aureobasidium pullulans, Metschnikowia fructicola, Cryptococcus albidus, Saccharomyces cerevisiae) that are or have been registered for the application as biocontrol products. These examples demonstrate the potential of yeasts for commercial biocontrol usage, but this review also highlights the scarcity of fundamental studies on yeast biocontrol mechanisms and of registered yeast-based biocontrol products. Yeast biocontrol mechanisms thus represent a largely unexplored field of research and plentiful opportunities for the development of commercial, yeast-based applications for plant protection exist.


Assuntos
Agentes de Controle Biológico/farmacologia , Doenças das Plantas/prevenção & controle , Leveduras/química , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Doenças das Plantas/microbiologia , Leveduras/classificação , Leveduras/genética , Leveduras/metabolismo
11.
Mol Microbiol ; 112(1): 317-332, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31081214

RESUMO

Metschnikowia pulcherrima synthesises the pigment pulcherrimin, from cyclodileucine (cyclo(Leu-Leu)) as a precursor, and exhibits strong antifungal activity against notorious plant pathogenic fungi. This yeast therefore has great potential for biocontrol applications against fungal diseases; particularly in the phyllosphere where this species is frequently found. To elucidate the molecular basis of the antifungal activity of M. pulcherrima, we compared a wild-type strain with a spontaneously occurring, pigmentless, weakly antagonistic mutant derivative. Whole genome sequencing of the wild-type and mutant strains identified a point mutation that creates a premature stop codon in the transcriptional regulator gene SNF2 in the mutant. Complementation of the mutant strain with the wild-type SNF2 gene restored pigmentation and recovered the strong antifungal activity. Mass spectrometry (UPLC HR HESI-MS) proved the presence of the pulcherrimin precursors cyclo(Leu-Leu) and pulcherriminic acid and identified new precursor and degradation products of pulcherriminic acid and/or pulcherrimin. All of these compounds were identified in the wild-type and complemented strain, but were undetectable in the pigmentless snf2 mutant strain. These results thus identify Snf2 as a regulator of antifungal activity and pulcherriminic acid biosynthesis in M. pulcherrima and provide a starting point for deciphering the molecular functions underlying the antagonistic activity of this yeast.


Assuntos
Adenosina Trifosfatases/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Antibiose/genética , Antifúngicos/metabolismo , Fungos/efeitos dos fármacos , Pirazinas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
12.
Yeast ; 35(10): 559-566, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29752875

RESUMO

Antagonistic yeasts suppress plant pathogenic fungi by various mechanisms, but their biocontrol efficacy also depends on the ability to compete and persist in the environment. The goal of the work presented here was to quantify the composition of synthetic yeast communities in order to determine the competitiveness of different species and identify promising candidates for plant protection. For this purpose, colony counting of distinct species and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS; MALDI biotyping) were used to distinguish different yeast species and to quantify the composition of a synthetic community of six yeasts (Aureobasidium pullulans, Candida subhashii, Cyberlindnera sargentensis, Hanseniaspora sp., Metschnikowia pulcherrima and Pichia kluyveri) over time, on apples and in soil, and in different growth media. These studies revealed important characteristics that predispose the different species for particular applications. For example, the competitiveness and antagonistic activity of C. subhashii was strongly increased in the presence of N-acetylglucosamin as the sole carbon source, M. pulcherrima and A. pullulans were the strongest competitors on apple, and C. sargentensis competed the best in soil microcosms. Based on these laboratory studies, M. pulcherrima and A. pullulans are promising candidates for biocontrol applications against fungal phyllosphere diseases, while C. sargentensis may hold potential for use against soilborne fungal pathogens. These results document the potential of MALDI-TOF MS for the quantitative analysis of synthetic yeast communities and highlight the value of studying microorganisms with relevant functions in moderately complex, synthetic communities and natural substrates rather than as individual isolates.


Assuntos
Antibiose , Agentes de Controle Biológico , Malus/microbiologia , Consórcios Microbianos , Microbiologia do Solo , Leveduras/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Meios de Cultura/química , Pichia/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Leveduras/classificação
13.
BMC Microbiol ; 17(1): 4, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056814

RESUMO

BACKGROUND: While recent advances in next generation sequencing technologies have enabled researchers to readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order to characterize the plethora of microorganisms that are being identified and to point out species that may be used for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens, antagonists, and saprophytes. RESULTS: Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes, ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima, Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M. pulcherrima were able to grow with N-acetyl-glucosamine as carbon source. CONCLUSIONS: The competition assays and physiological experiments described here identified known antagonists that have been implicated in the biological control of plant pathogenic fungi in the past, but also little characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile than yeasts from the phyllosphere. Noteworthy was the strong antagonistic activity of the soil yeast C. subhashii, which had so far only been described from a clinical sample and not been studied with respect to biocontrol. Based on binary competition assays and growth analyses (e.g., on different carbon sources, growth in root exudates), C. subhashii was identified as a competitive and antagonistic soil yeast with potential as a novel biocontrol agent against plant pathogenic fungi.


Assuntos
Antibiose , Agentes de Controle Biológico , Candida/isolamento & purificação , Candida/fisiologia , Fungos/crescimento & desenvolvimento , Microbiologia do Solo , Candida/classificação , Candida/metabolismo , DNA Fúngico , Fungos/patogenicidade , Genoma Fúngico , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Malus/microbiologia , Raízes de Plantas/microbiologia , Plantas/microbiologia , Rizosfera , Solo
15.
EMBO Rep ; 10(9): 1003-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19590579

RESUMO

Yeast has two phosphate-uptake systems that complement each other: the high-affinity transporters (Pho84 and Pho89) are active under phosphate starvation, whereas Pho87 and Pho90 are low-affinity transporters that function when phosphate is abundant. Here, we report new regulatory functions of the amino-terminal SPX domain of Pho87 and Pho90. By studying truncated versions of Pho87 and Pho90, we show that the SPX domain limits the phosphate-uptake velocity, suppresses phosphate efflux and affects the regulation of the phosphate signal transduction pathway. Furthermore, split-ubiquitin assays and co-immunoprecipitation suggest that the SPX domain of both Pho90 and Pho87 interacts physically with the regulatory protein Spl2. This work suggests that the SPX domain inhibits low-affinity phosphate transport through a physical interaction with Spl2.


Assuntos
Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
16.
RNA ; 15(5): 837-49, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19324962

RESUMO

Cordycepin (3' deoxyadenosine) is a biologically active compound that, when incorporated during RNA synthesis in vitro, provokes chain termination due to the absence of a 3' hydroxyl moiety. We were interested in the effects mediated by this drug in vivo and analyzed its impact on RNA metabolism of yeast. Our results support the view that cordycepin-triphosphate (CoTP) is the toxic component that is limiting cell growth through inhibition of RNA synthesis. Unexpectedly, cordycepin treatment modulated 3' end heterogeneity of ACT1 and ASC1 mRNAs and rapidly induced extended transcripts derived from CYH2 and NEL025c loci. Moreover, cordycepin ameliorated the growth defects of poly(A) polymerase mutants and the pap1-1 mutation neutralized the effects of the drug on gene expression. Our observations are consistent with an epistatic relationship between poly(A) polymerase function and cordycepin action and suggest that a major mode of cordycepin activity reduces 3' end formation efficiency independently of its potential to terminate RNA chain elongation. Finally, chemical-genetic profiling revealed genome-wide pathways linked to cordycepin activity and identified novel genes involved in poly(A) homeostasis.


Assuntos
Desoxiadenosinas/farmacologia , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Expressão Gênica/efeitos dos fármacos , Genoma Fúngico , Proteínas Associadas a Pancreatite , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
17.
Nucleic Acids Res ; 36(2): 353-63, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18033801

RESUMO

To identify genes involved in poly(A) metabolism, we screened the yeast gene deletion collection for growth defects in the presence of cordycepin (3'-deoxyadenosine), a precursor to the RNA chain terminating ATP analog cordycepin triphosphate. Deltapho80 and Deltapho85 strains, which have a constitutively active phosphate-response pathway, were identified as cordycepin hypersensitive. We show that inorganic polyphosphate (poly P) accumulated in these strains and that poly P is a potent inhibitor of poly(A) polymerase activity in vitro. Binding analyses of poly P and yeast Pap1p revealed an interaction with a k(D) in the low nanomolar range. Poly P also bound mammalian poly(A) polymerase, however, with a 10-fold higher k(D) compared to yeast Pap1p. Genetic tests with double mutants of Deltapho80 and other genes involved in phosphate homeostasis and poly P accumulation suggest that poly P contributed to cordycepin hypersensitivity. Synergistic inhibition of mRNA synthesis through poly P-mediated inhibition of Pap1p and through cordycepin-mediated RNA chain termination may thus account for hypersensitive growth of Deltapho80 and Deltapho85 strains in the presence of the chain terminator. Consistent with this, a mutation in the 3'-end formation component rna14 was synthetic lethal in combination with Deltapho80. Based on these observations, we suggest that binding of poly P to poly(A) polymerase negatively regulates its activity.


Assuntos
Desoxiadenosinas/farmacologia , Poliadenilação , Polinucleotídeo Adenililtransferase/antagonistas & inibidores , Polifosfatos/metabolismo , Saccharomyces cerevisiae/enzimologia , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Deleção de Genes , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
18.
Plant Cell Environ ; 30(12): 1557-65, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17944818

RESUMO

Banksia species (Proteaceae) occur on some of the most phosphorus (P)-impoverished soils in the world. We hypothesized that Banksia spp. maximize P-use efficiency through high photosynthetic P-use efficiency, long leaf lifespan (P residence time), effective P re-mobilization from senescing leaves, and maximizing seed P concentration. Field and glasshouse experiments were conducted to quantify P-use efficiency in nine Banksia species. Leaf P concentrations for all species were extremely low (0.14-0.32 mg P g(-1) DM) compared with leaf P in other species reported and low relative to other plant nutrients in Banksia spp.; however, moderately high rates of photosynthesis (13.8-21.7 micromol CO2 m(-2) s(-1)), were measured. Some of the Banksia spp. had greater P proficiency (i.e. final P concentration in senesced leaves after re-mobilization; range: 27-196 microg P g(-1) DM) than values reported for any other species in the literature. Seeds exhibited significantly higher P concentrations (6.6-12.2 mg P g(-1 )DM) than leaves, and species that sprout after fire ('re-sprouters') had significantly greater seed mass and P content than species that are killed by fire and regenerate from seed ('seeders'). Seeds contained only small amounts of polyphosphate (between 1.3 and 6 microg g(-1) DM), and this was not correlated with P concentration or fire response. Based on the evidence in the present study, we conclude that Banksia species are highly efficient in their use of P, explaining, in part, their success on P-impoverished soils, with little variation between species.


Assuntos
Adaptação Fisiológica , Fósforo/metabolismo , Folhas de Planta/metabolismo , Proteaceae/metabolismo , Sementes/metabolismo , Ecossistema , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteaceae/crescimento & desenvolvimento , Solo/análise , Austrália Ocidental
19.
Mol Biol Cell ; 18(11): 4438-45, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17804816

RESUMO

Inorganic polyphosphate (poly P) is a biopolymer that occurs in all organisms and cells and in many cellular compartments. It is involved in numerous biological phenomena and functions in cellular processes in all organisms. However, even the most fundamental aspects of poly P metabolism are largely unknown. In yeast, large amounts of poly P accumulate in the vacuole during growth. It is neither known how this poly P pool is synthesized nor how it is remobilized from the vacuole to replenish the cytosolic phosphate pool. Here, we report a systematic analysis of the yeast phosphate transporters and their function in poly P metabolism. By using poly P content as a read-out, it was possible to define novel functions of the five phosphate transporters: Pho84, Pho87, Pho89, Pho90, and Pho91, in budding yeast. Most notably, it was found that the low-affinity transporter Pho91 limits poly P accumulation in a strain lacking PHO85. This phenotype was not caused by a regulatory effect on the PHO pathway, but can be attributed to the unexpected localization of Pho91 in the vacuolar membrane. This finding is consistent with the hypothesis that Pho91 serves as a vacuolar phosphate transporter that exports phosphate from the vacuolar lumen to the cytosol.


Assuntos
Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Deleção de Genes , Proteínas de Transporte de Fosfato/genética , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulação para Cima , Vacúolos/metabolismo
20.
BMC Plant Biol ; 7: 51, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17892566

RESUMO

BACKGROUND: Inorganic polyphosphate (poly P), linear chains of phosphate residues linked by energy rich phosphoanhydride bonds, is found in every cell and organelle and is abundant in algae. Depending on its localization and concentration, poly P is involved in various biological functions. It serves, for example, as a phosphate store and buffer against alkali, is involved in energy metabolism and regulates the activity of enzymes. Bacteria defective in poly P synthesis are impaired in biofilm development, motility and pathogenicity. PolyP has also been found in fungal cell walls and bacterial envelopes, but has so far not been measured directly or stained specifically in the cell wall of any plant or alga. RESULTS: Here, we demonstrate the presence of poly P in the cell wall of Chlamydomonas reinhardtii by staining with specific poly P binding proteins. The specificity of the poly P signal was verified by various competition experiments, by staining with different poly P binding proteins and by correlation with biochemical quantification. Microscopical investigation at different time-points during growth revealed fluctuations of the poly P signal synchronous with the cell cycle: The poly P staining peaked during late cytokinesis and was independent of the high intracellular poly P content, which fluctuated only slightly during the cell cycle. CONCLUSION: The presented staining method provides a specific and sensitive tool for the study of poly P in the extracellular matrices of algae and could be used to describe the dynamic behaviour of cell wall poly P during the cell cycle. We assume that cell wall poly P and intracellular poly P are regulated by distinct mechanisms and it is suggested that cell wall bound poly P might have important protective functions against toxic compounds or pathogens during cytokinesis, when cells are more vulnerable.


Assuntos
Parede Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Citocinese/fisiologia , Polifosfatos/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Animais , Ciclo Celular/fisiologia , Chlamydomonas reinhardtii/citologia , Microscopia de Fluorescência , Ligação Proteica , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA