Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Euro Surveill ; 29(18)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699902

RESUMO

BackgroundThe pet industry is expanding worldwide, particularly raw meat-based diets (RMBDs). There are concerns regarding the safety of RMBDs, especially their potential to spread clinically relevant antibiotic-resistant bacteria or zoonotic pathogens.AimWe aimed to investigate whether dog food, including RMBD, commercially available in Portugal can be a source of Salmonella and/or other Enterobacteriaceae strains resistant to last-line antibiotics such as colistin.MethodsFifty-five samples from 25 brands (21 international ones) of various dog food types from 12 suppliers were screened by standard cultural methods between September 2019 and January 2020. Isolates were characterised by phenotypic and genotypic methods, including whole genome sequencing and comparative genomics.ResultsOnly RMBD batches were contaminated, with 10 of 14 containing polyclonal multidrug-resistant (MDR) Escherichia coli and one MDR Salmonella. One turkey-based sample contained MDR Salmonella serotype 1,4,[5],12:i:- ST34/cgST142761 with similarity to human clinical isolates occurring worldwide. This Salmonella exhibited typical antibiotic resistance (bla TEM + strA-strB + sul2 + tet(B)) and metal tolerance profiles (pco + sil + ars) associated with the European epidemic clone. Two samples (turkey/veal) carried globally dispersed MDR E. coli (ST3997-complexST10/cgST95899 and ST297/cgST138377) with colistin resistance (minimum inhibitory concentration: 4 mg/L) and mcr-1 gene on IncX4 plasmids, which were identical to other IncX4 circulating worldwide.ConclusionSome RMBDs from European brands available in Portugal can be a vehicle for clinically relevant MDR Salmonella and pathogenic E. coli clones carrying genes encoding resistance to the last-line antibiotic colistin. Proactive actions within the One Health context, spanning regulatory, pet-food industry and consumer levels, are needed to mitigate these public health risks.


Assuntos
Antibacterianos , Escherichia coli , Carne , Salmonella , Animais , Salmonella/isolamento & purificação , Salmonella/genética , Salmonella/efeitos dos fármacos , Humanos , Portugal , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Cães , Antibacterianos/farmacologia , Carne/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Animais de Estimação/microbiologia , Sequenciamento Completo do Genoma , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética , Colistina/farmacologia , Ração Animal/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia
2.
FEMS Microbes ; 5: xtae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606354

RESUMO

Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.

3.
J Antimicrob Chemother ; 79(4): 846-850, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366373

RESUMO

OBJECTIVES: To investigate the global distribution of an optrA-harbouring linezolid-resistant Enterococcus faecalis ST476 clonal lineage. METHODS: Comprehensive searches of the NCBI database were performed to identify published peer-reviewed articles and genomes of E. faecalis ST476. Each genome was analysed for resistome, virulome, OptrA variant and optrA genetic contexts. A phylogenetic comparison of ST476 genomes with publicly available genomes of other STs was also performed. RESULTS: Sixty-six E. faecalis ST476 isolates from 15 countries (China, Japan, South Korea, Austria, Denmark, Spain, Czech Republic, Colombia, Tunisia, Italy, Malaysia, Belgium, Germany, United Arab Emirates and Switzerland) mainly of human and animal origin were identified. Thirty available ST476 genomes compared with genomes of 591 STs indicated a progressive radiation of E. faecalis STs starting from ST21. The closest ancestral node for ST476 was ST1238. Thirty E. faecalis ST476 genomes exhibited 3-916 SNP differences. Several antimicrobial resistance and virulence genes were conserved among the ST476 genomes. The optrA genetic context exhibited a high degree of or complete identity to the chromosomal transposon Tn6674. Only three isolates displayed an optrA-carrying plasmid with complete or partial Tn6674. The WT OptrA protein was most widespread in the ST476 lineage. CONCLUSIONS: Linezolid-resistant optrA-carrying E. faecalis of the clonal lineage ST476 is globally distributed in human, animal and environmental settings. The presence of such an emerging clone can be of great concern for public health. Thus, a One Health approach is needed to counteract the spread and the evolution of this enterococcal clonal lineage.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Humanos , Linezolida/farmacologia , Antibacterianos/farmacologia , Enterococcus faecalis , Filogenia , Farmacorresistência Bacteriana/genética , Enterococcus , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Enterococcus faecium/genética , Testes de Sensibilidade Microbiana
4.
Microbiol Spectr ; 12(3): e0372423, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329344

RESUMO

Enterococcus faecium (Efm) is a leading cause of hospital-associated (HA) infections, often enriched in putative virulence markers (PVMs). Recently, the Efm clade B was assigned as Enterococcus lactis (Elts), which usually lack HA-Efm infection markers. Available databases for extracting PVM are incomplete and/or present an intermix of genes from Efm and Enterococcus faecalis, with distinct virulence profiles. In this study, we constructed a new database containing 27 PVMs [acm, scm, sgrA, ecbA, fnm, sagA, hylEfm, ptsD, orf1481, fms15, fms21-fms20 (pili gene cluster 1, PGC-1), fms14-fms17-fms13 (PGC-2), empA-empB-empC (PGC-3), fms11-fms19-fms16 (PGC-4), ccpA, bepA, gls20-glsB1, and gls33-glsB] from nine reference genomes (seven Efm + two Elts). The database was validated against these reference genomes and further evaluated using a collection of well-characterized Efm (n = 43) and Elts (n = 7) control strains, by assessing PVM presence/absence and its variants together with a genomic phylogeny constructed as single-nucleotide polymorphisms. We found a high concordance between the phylogeny and in silico findings of the PVM, with Elts clustering separately and mostly carrying Elts-specific PVM gene variants. Based on our validation results, we recommend using the database with raw reads instead of assemblies to avoid missing gene variants. This newly constructed database of 27 PVMs will enable a more comprehensive characterization of Efm and Elts based on WGS data. The developed database exhibits scalability and boasts a range of applications in public health, including diagnostics, outbreak investigations, and epidemiological studies. It can be further used in risk assessment for distinguishing between safe and unsafe enterococci.IMPORTANCEThe newly constructed database, consisting of 27 putative virulence markers, is highly scalable and serves as a valuable resource for the comprehensive characterization of these closely related species using WGS data. It holds significant potential for various public health applications, including hospital outbreak investigations, surveillance, and risk assessment for probiotics and feed additives.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Enterococcus faecium/genética , Virulência/genética , Enterococcus/genética , Enterococcus faecalis/genética , Antibacterianos , Infecções por Bactérias Gram-Positivas/epidemiologia
5.
J Clin Microbiol ; 62(2): e0121123, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38284762

RESUMO

The reliability of Fourier-transform infrared (FT-IR) spectroscopy for Klebsiella pneumoniae typing and outbreak control has been previously assessed, but issues remain in standardization and reproducibility. We developed and validated a reproducible FT-IR with attenuated total reflectance (ATR) workflow for the identification of K. pneumoniae lineages. We used 293 isolates representing multidrug-resistant K. pneumoniae lineages causing outbreaks worldwide (2002-2021) to train a random forest classification (RF) model based on capsular (KL)-type discrimination. This model was validated with 280 contemporaneous isolates (2021-2022), using wzi sequencing and whole-genome sequencing as references. Repeatability and reproducibility were tested in different culture media and instruments throughout time. Our RF model allowed the classification of 33 capsular (KL)-types and up to 36 clinically relevant K. pneumoniae lineages based on the discrimination of specific KL- and O-type combinations. We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), including from cultures obtained directly from the clinical sample, allowing to obtain typing information the same day bacteria are identified. The workflow was reproducible in different instruments throughout time (>98% correct predictions). Direct colony application, spectral acquisition, and automated KL prediction through Clover MS Data analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR ATR spectroscopy provides meaningful, reproducible, and accurate information at a very early stage (as soon as bacterial identification) to support infection control and public health surveillance. The high robustness together with automated and flexible workflows for data analysis provide opportunities to consolidate real-time applications at a global level. IMPORTANCE We created and validated an automated and simple workflow for the identification of clinically relevant Klebsiella pneumoniae lineages by FT-IR spectroscopy and machine-learning, a method that can be extremely useful to provide quick and reliable typing information to support real-time decisions of outbreak management and infection control. This method and workflow is of interest to support clinical microbiology diagnostics and to aid public health surveillance.


Assuntos
Bactérias , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sequenciamento Completo do Genoma , Proteínas Mutadas de Ataxia Telangiectasia
6.
Microorganisms ; 11(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37894167

RESUMO

The relevance of postmortem microbiological examinations has been controversial for decades, but the boom in advanced sequencing techniques over the last decade is increasingly demonstrating their usefulness, namely for the estimation of the postmortem interval. This comprehensive review aims to present the current knowledge about the human postmortem microbiome (the necrobiome), highlighting the main factors influencing this complex process and discussing the principal applications in the field of forensic sciences. Several limitations still hindering the implementation of forensic microbiology, such as small-scale studies, the lack of a universal/harmonized workflow for DNA extraction and sequencing technology, variability in the human microbiome, and limited access to human cadavers, are discussed. Future research in the field should focus on identifying stable biomarkers within the dominant Bacillota and Pseudomonadota phyla, which are prevalent during postmortem periods and for which standardization, method consolidation, and establishment of a forensic microbial bank are crucial for consistency and comparability. Given the complexity of identifying unique postmortem microbial signatures for robust databases, a promising future approach may involve deepening our understanding of specific bacterial species/strains that can serve as reliable postmortem interval indicators during the process of body decomposition. Microorganisms might have the potential to complement routine forensic tests in judicial processes, requiring robust investigations and machine-learning models to bridge knowledge gaps and adhere to Locard's principle of trace evidence.

7.
Microbiol Spectr ; 11(6): e0020123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811975

RESUMO

IMPORTANCE: Enterococcus faecalis causes life-threatening invasive hospital- and community-associated infections that are usually associated with multidrug resistance globally. Although E. faecalis infections cause opportunistic infections typically associated with antibiotic use, immunocompromised immune status, and other factors, they also possess an arsenal of virulence factors crucial for their pathogenicity. Despite this, the relative contribution of these virulence factors and other genetic changes to the pathogenicity of E. faecalis strains remain poorly understood. Here, we investigated whether specific genomic changes in the genome of E. faecalis isolates influence its pathogenicity-infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection and intestinal colonization. Our findings indicate that E. faecalis genetics partially influence the infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection, possibly due to gut-to-bloodstream translocation, highlighting the potential substantial role of host and environmental factors, including gut microbiota, on the opportunistic pathogenic lifestyle of this bacterium.


Assuntos
Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Humanos , Fatores de Virulência/genética , Virulência/genética , Antibacterianos , Infecções por Bactérias Gram-Positivas/microbiologia
8.
Microbiol Spectr ; : e0232423, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737589

RESUMO

Quaternary ammonium compounds (QACs) have been extensively used in the community, healthcare facilities, and food chain, in concentrations between 20 and 30,000 mg/L. Enterococcus faecalis and Enterococcus faecium are ubiquitous in these settings and are recognized as nosocomial pathogens worldwide, but QACs' activity against strains from diverse epidemiological and genomic backgrounds remained largely unexplored. We evaluated the role of Enterococcus isolates from different sources, years, and clonal lineages as hosts of QACs tolerance genes and their susceptibility to QACs in optimal, single-stress and cross-stress growth conditions. Only 1% of the Enterococcus isolates included in this study and 0.5% of publicly available Enterococcus genomes carried qacA/B, qacC, qacG, qacJ, qacZ, qrg, bcrABC or oqxAB genes, shared with >60 species of Bacillota, Pseudomonadota, Actinomycetota, or Spirochaetota. These genes were generally found within close proximity of antibiotics and/or metals resistance genes. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of benzalkonium chloride (BC) and didecyldimethylammonium chloride ranged between 0.5 and 4 mg/L (microdilution: 37°C/20 h/pH = 7/aerobiosis) for 210 E. faecalis and E. faecium isolates (two isolates carrying qacZ). Modified growth conditions (e.g., 22°C/pH = 5) increased MICBC/MBCBC (maximum of eightfold and MBCBC = 16 mg/L) and changed bacterial growth kinetics under BC toward later stationary phases in both species, including in isolates without QACs tolerance genes. In conclusion, Enterococcus are susceptible to in-use QACs concentrations and rarely carry QACs tolerance genes. However, their potential gene exchange with different microbiota, the decreased susceptibility to QACs under specific environmental conditions, and the presence of subinhibitory QACs concentrations in various settings may contribute to the selection of particular strains and, thus, require a One Health strategy to maintain QACs effectiveness. IMPORTANCE Despite the increasing use of quaternary ammonium compounds (QACs), the susceptibility of pathogens to these antimicrobials remains largely unknown. Enterococcus faecium and Enterococcus faecalis are susceptible to in-use QACs concentrations and are not main hosts of QACs tolerance genes but participate in gene transfer pathways with diverse bacterial taxa exposed to these biocides. Moreover, QACs tolerance genes often share the same genetic contexts with antibiotics and/or metals resistance genes, raising concerns about potential co-selection events. E. faecium and E. faecalis showed increased tolerance to benzalkonium chloride under specific environmental conditions (22°C, pH = 5), suggesting that strains might be selected in settings where they occur along with subinhibitory QACs concentrations. Transcriptomic studies investigating the cellular mechanisms of Enterococcus adaptation to QACs tolerance, along with longitudinal metadata analysis of tolerant populations dynamics under the influence of diverse environmental factors, are essential and should be prioritized within a One Health strategy.

9.
Microorganisms ; 11(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764174

RESUMO

Acid stress poses a common challenge for bacteria in diverse environments by the presence of inorganic (e.g., mammals' stomach) or organic acids (e.g., feed additives; acid-based disinfectants). Limited knowledge exists regarding acid-tolerant strains of specific serotypes, clonal lineages, or sources in human/animal pathogens: namely, non-typhoidal Salmonella enterica (NTS) and Enterococcus faecium (Efm). This study evaluated the acidic pH (Mueller-Hinton acidified with HCl) and peracetic acid (PAA) susceptibility of Efm (n = 72) and NTS (n = 60) from diverse epidemiological/genetic backgrounds and with multiple antibiotic resistance profiles. Efm minimum growth/survival pH was 4.5-5.0/3.0-4.0, and for NTS it was 4.0-4.5/3.5-4.0. Efm distribution among acidic pH values showed that only isolates of clade-non-A1 (non-hospital associated) or the food chain were more tolerant to acidic pH compared to clade-A1 (hospital-associated clones) or clinical isolates (p < 0.05). In the case of NTS, multidrug-resistant (MDR) isolates survived better in acidic pH (p < 0.05). The PAA MIC/MBC for Efm was 70-120/80-150 mg/L, and for NTS, it was 50-70/60-100 mg/L. The distribution of Efm among PAA concentrations showed that clade-A1 or MDR strains exhibited higher tolerance than clade-non-A1 or non-MDR ones (p < 0.05). NTS distribution also showed higher tolerance to PAA among non-MDR and clinical isolates than food chain ones (p < 0.05) but there were no differences among different serogroups. This unique study identifies specific NTS or Efm populations more tolerant to acidic pH or PAA, emphasizing the need for further research to tailor controlled measures of public health and food safety within a One Health framework.

10.
Microorganisms ; 11(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37512858

RESUMO

Antimicrobial resistance (AMR) has become a critical global health emergency in the 21st century, with the greatest burden in resource-limited settings [...].

11.
Sci Total Environ ; 900: 165769, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37506909

RESUMO

The use of antibiotics in animal production is linked to the emergence and spread of antibiotic-resistant bacteria, a threat to animal, environmental and human health. Copper (Cu) is an essential element in poultry diets and an alternative to antibiotics, supplementing inorganic or organic trace mineral feeds (ITMF/OTMF). However, its contribution to select multidrug-resistant (MDR) and Cu tolerant Enterococcus, a bacteria with a human-animal-environment-food interface, remains uncertain. We evaluated whether feeding chickens with Cu-ITMF or Cu-OTMF contributes to the selection of Cu tolerant and MDR Enterococcus from rearing to slaughter. Animal faeces [2-3-days-old (n = 18); pre-slaughter (n = 16)] and their meat (n = 18), drinking-water (n = 14) and feed (n = 18) from seven intensive farms with ITMF and OTMF flocks (10.000-64.000 animals each; 2019-2020; Portugal) were sampled. Enterococcus were studied by cultural, molecular and whole-genome sequencing methods and Cu concentrations by ICP-MS. Enterococcus (n = 477; 60 % MDR) were identified in 80 % of the samples, with >50 % carrying isolates resistant to tetracycline, quinupristin-dalfopristin, erythromycin, streptomycin, ampicillin or ciprofloxacin. Enterococcus with Cu tolerance genes, especially tcrB ± cueO, were mainly found in faeces (85 %; E. faecium/E. lactis) of ITMF/OTMF flocks. Similar occurrence and load of tcrB ± cueO Enterococcus in the faeces was detected throughout the chickens' lifespan in the ITMF/OTMF flocks, decreasing in meat. Most of the polyclonal MDR Enterococcus population carrying tcrB ± cueO or only cueO (67 %) showed a wild-type phenotype (MICCuSO4 ≤ 12 mM) linked to absence of tcrYAZB or truncated variants, also detected in 85 % of Enterococcus public genomes from poultry. Finally, < 65 µg/g Cu was found in all faecal and meat samples. In conclusion, Cu present in ITMF/OTMF is not selecting Cu tolerant and MDR Enterococcus during chickens' lifespan. However, more studies are needed to assess the minimum concentration of Cu required for MDR bacterial selection and horizontal transfer of antibiotic resistance genes, which would support sustainable practices mitigating antibiotic resistance spread in animal production and the environment beyond.


Assuntos
Antibacterianos , Enterococcus , Humanos , Animais , Antibacterianos/farmacologia , Aves Domésticas/microbiologia , Cobre/farmacologia , Galinhas/microbiologia , Suplementos Nutricionais , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
13.
Int J Food Microbiol ; 384: 109981, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36306546

RESUMO

Poultry meat has been a vehicle of antibiotic resistant bacteria and genes. Yet, the diversity of selective pressures associated with their maintenance in the poultry-production chain remains poorly explored. We evaluated the susceptibility of Enterococcus spp. from chicken meat collected 20 years apart to antibiotics, metals, acidic pH and peracetic acid-PAA. Contemporary chicken-meat samples (n = 53 batches, each including a pool of neck skin from 10 single carcasses) were collected in a slaughterhouse facility using PAA as disinfectant (March-August 2018, North of Portugal). Broilers were raised in intensive farms (n = 29) using CuSO4 and organic acids as feed additives. Data were compared with that of 67 samples recovered in the same region during 1999-2001. All 2018 samples had multidrug resistant-MDR isolates, with >45 % carrying Enterococcus faecalis, Enterococcus faecium or Enterococcus gallinarum resistant to tetracycline, erythromycin, ampicillin, quinupristin-dalfopristin, ciprofloxacin, chloramphenicol or aminoglycosides. Resistance rates were similar (P > 0.05) to those of 1999-2001 samples for all but five antibiotics. The decrease of samples carrying vancomycin-resistant isolates from 46 % to 0 % between 1999-2001 and 2018 was the most striking difference. Isolates from both periods were similarly susceptible to acid pH [minimum-growth pH (4.5-5.0), minimum-survival pH (3.0-4.0)] and to PAA (MIC90 = 100-120 mg/L/MBC90 = 140-160 mg/L; below concentrations used in slaughterhouse). Copper tolerance genes (tcrB and/or cueO) were respectively detected in 21 % and 4 % of 2018 and 1999-2001 samples. The tcrB gene was only detected in E. faecalis (MICCuSO4 > 12 mM), and their genomes were compared with other international ones of chicken origin (PATRIC database), revealing a polyclonal population and a plasmid or chromosomal location for tcrB. The tcrB plasmids shared diverse genetic modules, including multiple antimicrobial resistance genes (e.g. to tetracyclines, chloramphenicol, macrolide-lincosamide-streptogramin B-MLSB, aminoglycosides, bacitracin, coccidiostats). When in chromosome, the tcrB gene was co-located closely to merA (mercury) genes. Chicken meat remains an important vehicle of MDR Enterococcus spp. able to survive under diverse stresses (e.g. copper, acid) potentially contributing to these bacteria maintenance and flux among animal-environment-humans.


Assuntos
Galinhas , Enterococcus faecium , Animais , Humanos , Galinhas/microbiologia , Aves Domésticas , Antibacterianos/farmacologia , Cobre/farmacologia , Testes de Sensibilidade Microbiana , Enterococcus , Aminoglicosídeos , Cloranfenicol , Farmacorresistência Bacteriana/genética , Carne/microbiologia
15.
Microbiol Spectr ; 10(6): e0326822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453910

RESUMO

It was recently proposed that Enterococcus faecium colonizing the human gut (previous clade B) actually corresponds to Enterococcus lactis. Our goals were to develop a PCR assay to rapidly differentiate these species and to discuss the main phenotypic and genotypic differences from a clinical perspective. The pan-genome of 512 genomes of E. faecium and E. lactis strains was analyzed to assess diversity in genes between the two species. Sequences were aligned to find the best candidate gene for designing species-specific primers, and their accuracy was tested with a collection of 382 enterococci. E. lactis isolates from clinical origins were further characterized by whole-genome sequencing (Illumina). Pan-genome analysis resulted in 12 gene variants, with gene gluP (rhomboid protease) being selected as the candidate for species differentiation. The nucleotide sequence of gluP diverged by 90 to 92% between sets, which allowed species identification through PCR with 100% specificity and no cross-reactivity. E. lactis strains were greatly pan-susceptible and not host specific. Hospital E. lactis isolates were susceptible to clinically relevant antibiotics, lacked infection-associated virulence markers, and were associated with patients presenting risk factors for enhanced bacterial translocation. Here, we propose a PCR-based assay using gluP for easy routine differentiation between E. faecium and E. lactis that could be implemented in different public health contexts. We further suggest that E. lactis, a dominant human gut species, can cross the gut barrier in severely ill, immunodeficient, and surgical patients. Knowing that bacterial translocation may be a sepsis promoter, the relevance of infections caused by E. lactis strains, even if they are pan-susceptible, should be explored. IMPORTANCE Enterococcus faecium is a WHO priority pathogen that causes severe and hard-to-treat human infections. It was recently proposed that E. faecium colonizing the human gut (previous clade B) actually corresponds to Enterococcus lactis; therefore, some of the human infections occurring globally are being misidentified. In this work, we developed a PCR-based rapid identification method for the differentiation of E. faecium and E. lactis and discussed the main phenotypic and genotypic differences of these species from a clinical perspective. We identified the gluP gene as the best candidate, based on the phylogenomic analysis of 512 published pan-genomes, and validated the PCR assay with a comprehensive collection of 382 enterococci obtained from different sources. Further detailed analysis of clinical E. lactis strains showed that they are highly susceptible to antibiotics and lack the typical virulence markers of E. faecium but are able to cause severe human infections in immunosuppressed patients, possibly in part due to gut barrier translocation.


Assuntos
Enterococcus faecium , Enterococcus , Infecções por Bactérias Gram-Positivas , Reação em Cadeia da Polimerase , Humanos , Antibacterianos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococcus/genética , Enterococcus/isolamento & purificação
17.
Microbiol Spectr ; 10(4): e0117622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862993

RESUMO

Chlorhexidine (CHX) is widely used to control the spread of pathogens (e.g., human/animal clinical settings, ambulatory care, food industry). Enterococcus faecalis, a major nosocomial pathogen, is broadly distributed in diverse hosts and environments facilitating its exposure to CHX over the years. Nevertheless, CHX activity against E. faecalis is understudied. Our goal was to assess CHX activity and the variability of ChlR-EfrEF proteins (associated with CHX tolerance) among 673 field isolates and 1,784 E. faecalis genomes from the PATRIC database from different sources, time spans, clonal lineages, and antibiotic-resistance profiles. The CHX MIC (MICCHX) and minimum bactericidal concentration (MBCCHX) against E. faecalis presented normal distributions (0.5 to 64 mg/L). However, more CHX-tolerant isolates were detected in the food chain and recent human infections, suggesting an adaptability of E. faecalis populations in settings where CHX is heavily used. Heterogeneity in ChlR-EfrEF sequences was identified, with isolates harboring incomplete ChlR-EfrEF proteins, particularly the EfrE identified in the ST40 clonal lineage, showing low MICCHX (≤1mg/L). Distinct ST40-E. faecalis subpopulations carrying truncated and nontruncated EfrE were detected, with the former being predominant in human isolates. This study provides a new insight about CHX susceptibility and ChlR-EfrEF variability within diverse E. faecalis populations. The MICCHX/MBCCHX of more tolerant E. faecalis (MICCHX = 8 mg/L; MBCCHX = 64 mg/L) remain lower than in-use concentrations of CHX (≥500 mg/L). However, increased CHX use, combined with concentration gradients occurring in diverse environments, potentially selecting multidrug-resistant strains with different CHX susceptibilities, signals the importance of monitoring the trends of E. faecalis CHX tolerance within a One Health approach. IMPORTANCE Chlorhexidine (CHX) is a disinfectant and antiseptic used since the 1950s and included in the World Health Organization's list of essential medicines. It has been widely applied in hospitals, the community, the food industry, animal husbandry and pets. CHX tolerance in Enterococcus faecalis, a ubiquitous bacterium and one of the leading causes of human hospital-acquired infections, remains underexplored. Our study provides novel and comprehensive insights about CHX susceptibility within the E. faecalis population structure context, revealing more CHX-tolerant subpopulations from the food chain and recent human infections. We further show a detailed analysis of the genetic diversity of the efrEF operon (previously associated with E. faecalis CHX tolerance) and its correlation with CHX phenotypes. The recent strains with a higher tolerance to CHX and the multiple sources where bacteria are exposed to this biocide alert us to the need for the continuous monitoring of E. faecalis adaptation toward CHX tolerance within a One Health approach.


Assuntos
Clorexidina , Desinfetantes , Animais , Antibacterianos , Clorexidina/metabolismo , Clorexidina/farmacologia , Células Clonais , Desinfetantes/metabolismo , Enterococcus faecalis/genética , Humanos , Testes de Sensibilidade Microbiana , Óperon
18.
Microorganisms ; 10(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336207

RESUMO

Multidrug-resistant (MDR) Enterococcus faecium (Efm) infections continue to increase worldwide, although epidemiological studies remain scarce in lower middle-income countries. We aimed to explore which strains circulate in E. faecium causing human infections in Tunisian healthcare institutions in order to compare them with strains from non-human sources of the same country and finally to position them within the global E. faecium epidemiology by genomic analysis. Antibiotic susceptibility testing was performed and transfer of vancomycin-vanA and ampicillin-pbp5 resistance was performed by conjugation. WGS-Illumina was performed on Tunisian strains, and these genomes were compared with Efm genomes from other regions present in the GenBank/NCBI database (n = 10,701 Efm genomes available May 2021). A comparison of phenotypes with those predicted by the recent ResFinder 4.1-CGE webtool unveiled a concordance of 88%, with discordant cases being discussed. cgMLST revealed three clusters [ST18/CT222 (n = 13), ST17/CT948 strains (n = 6), and ST203/CT184 (n = 3)], including isolates from clinical, healthy-human, retail meat, and/or environmental sources in different countries over large time spans (10-12 years). Isolates within each cluster showed similar antibiotic resistance, bacteriocin, and virulence genetic patterns. pbp5-AmpR was transferred by VanA-AmpR-ST80 (clinical) and AmpR-ST17-Efm (bovine meat). Identical chromosomal pbp5-platforms carrying metabolic/virulence genes were identified between ST17/ST18 strains of clinical, farm animal, and retail meat sources. The overall results emphasize the role of high-resolution genotyping as provided by WGS in depicting the dispersal of MDR-Efm strains carrying relevant adaptive traits across different hosts/regions and the need of a One Health task force to curtail their spread.

19.
Antibiotics (Basel) ; 10(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680796

RESUMO

Enterococcus spp. are one of the most frequent producers of bacteriocins (enterocins), which provides them with an advantage to compete in their natural environment, which is the gut of humans and many animals. The enterocins' activity against microorganisms from different phylogenetic groups has raised interest in Enterococcus spp. in different contexts throughout the last decades, especially in the food industry. Nevertheless, some species can also cause opportunistic life-threatening infections and are frequently multidrug-resistant (MDR). Vancomycin-resistant Enterococcus (VRE), in particular, are an ongoing global challenge given the lack of therapeutic options. In this scenario, bacteriocins can offer a potential solution to this persistent threat, either alone or in combination with other antimicrobials. There are a handful of studies that demonstrate the advantages and applications of bacteriocins, especially against VRE. The purpose of this review is to present a current standpoint about the dual role of Enterococcus spp., from important producers to targets needed to be controlled, and the crucial role that enterocins may have in the expansion of enterococcal populations. Classification and distribution of enterocins, the current knowledge about the bacteriocinome of clinical enterococci, and the challenges of bacteriocin use in the fight against VRE infections are particularly detailed.

20.
J Antimicrob Chemother ; 76(11): 2757-2764, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450635

RESUMO

BACKGROUND: Vancomycin resistance is mostly associated with Enterococcus faecium due to Tn1546-vanA located on narrow- and broad-host plasmids of various families. This study's aim was to analyse the effects of acquiring Tn1546-carrying plasmids with proven epidemicity in different bacterial host backgrounds. METHODS: Widespread Tn1546-carrying plasmids of different families RepA_N (n = 5), Inc18 (n = 4) and/or pHTß (n = 1), and prototype plasmids RepA_N (pRUM) and Inc18 (pRE25, pIP501) were analysed. Plasmid transferability and fitness cost were assessed using E. faecium (GE1, 64/3) and Enterococcus faecalis (JH2-2/FA202/UV202) recipient strains. Growth curves (Bioscreen C) and Relative Growth Rates were obtained in the presence/absence of vancomycin. Plasmid stability was analysed (300 generations). WGS (Illumina-MiSeq) of non-evolved and evolved strains (GE1/64/3 transconjugants, n = 49) was performed. SNP calling (Breseq software) of non-evolved strains was used for comparison. RESULTS: All plasmids were successfully transferred to different E. faecium clonal backgrounds. Most Tn1546-carrying plasmids and Inc18 and RepA_N prototypes reduced host fitness (-2% to 18%) while the cost of Tn1546 expression varied according to the Tn1546-variant and the recipient strain (9%-49%). Stability of Tn1546-carrying plasmids was documented in all cases, often with loss of phenotypic resistance and/or partial plasmid deletions. SNPs and/or indels associated with essential bacterial functions were observed on the chromosome of evolved strains, some of them linked to increased fitness. CONCLUSIONS: The stability of E. faecium Tn1546-carrying plasmids in the absence of selective pressure and the high intra-species conjugation rates might explain the persistence of vancomycin resistance in E. faecium populations despite the significant burden they might impose on bacterial host strains.


Assuntos
Infecção Hospitalar , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Proteínas de Bactérias/genética , Infecção Hospitalar/epidemiologia , Elementos de DNA Transponíveis , Surtos de Doenças , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/epidemiologia , Humanos , Plasmídeos , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA