RESUMO
Background: A substantial proportion of attendances to ophthalmic emergency departments are for non-urgent presentations. We developed and evaluated a machine learning system (DemDx Ophthalmology Triage System: DOTS) to optimise triage, with the aim of reducing inappropriate emergency attendances and streamlining case referral when necessary. Methods: DOTS was built using retrospective tabular data from 11,315 attendances between July 1st, 2021, to June 15th, 2022 at Moorfields Eye Hospital Emergency Department (MEH) in London, UK. Demographic and clinical features were used as inputs and a triage recommendation was given ("see immediately", "see within a week", or "see electively"). DOTS was validated temporally and compared with triage nurses' performance (1269 attendances at MEH) and validated externally (761 attendances at the Federal University of Minas Gerais - UFMG, Brazil). It was also tested for biases and robustness to variations in disease incidences. All attendances from patients aged at least 18 years with at least one confirmed diagnosis were included in the study. Findings: For identifying ophthalmic emergency attendances, on temporal validation, DOTS had a sensitivity of 94.5% [95% CI 92.3-96.1] and a specificity of 42.4% [38.8-46.1]. For comparison within the same dataset, triage nurses had a sensitivity of 96.4% [94.5-97.7] and a specificity of 25.1% [22.0-28.5]. On external validation at UFMG, DOTS had a sensitivity of 95.2% [92.5-97.0] and a specificity of 32.2% [27.4-37.0]. In simulated scenarios with varying disease incidences, the sensitivity was ≥92.2% and the specificity was ≥36.8%. No differences in sensitivity were found in subgroups of index of multiple deprivation, but the specificity was higher for Q2 when compared to Q4 (Q4 is less deprived than Q2). Interpretation: At MEH, DOTS had similar sensitivity to triage nurses in determining attendance priority; however, with a specificity of 17.3% higher, DOTS resulted in lower rates of patients triaged to be seen immediately at emergency. DOTS showed consistent performance in temporal and external validation, in social-demographic subgroups and was robust to varying relative disease incidences. Further trials are necessary to validate these findings. This system will be prospectively evaluated, considering human-computer interaction, in a clinical trial. Funding: The Artificial Intelligence in Health and Care Award (AI_AWARD01671) of the NHS AI Lab under National Institute for Health and Care Research (NIHR) and the Accelerated Access Collaborative (AAC).
RESUMO
Polyimide is an emerging and very interesting material for substrate and passivation of neural probes. However, the standard curing temperature of polyimide (350 °C) is critical for the microelectrodes and contact pads of the neural probe, due to the thermal oxidation of the metals during the passivation process of the neural probe. Here, the fabrication process of a flexible neural probe, enhanced with a photosensitive and low-temperature cured polyimide, is presented. Annealing tests were performed with metallic films deposited on polyimide, which led to the reduction of the curing temperature to 250 °C, with no significant irregularities in the metallic sample annealed at that temperature and an effective polyimide curing. The use of a lower curing temperature reduces the thermal oxidation of the metals during the polyimide curing process to passivate the neural probe. Additionally, in this fabrication process, the microelectrodes of the neural probe were coated with electrodeposited platinum (Pt), only after the passivation process, and its electrochemical performance was accessed. At 1 kHz, the impedance of the microelectrodes before Pt electrodeposition was approximately 1.2 MΩ, and after Pt electrodeposition, it was approximately 350 kΩ. Pt electrodeposition changed the equivalent circuit of the microelectrodes and reduced their impedance, which will be crucial for future in-vivo tests to acquire the electrical activity of the neurons with the fabricated neural probe.
Assuntos
Galvanoplastia , Platina , Eletrodos Implantados , Temperatura , MicroeletrodosRESUMO
OBJECTIVES: The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. METHOD: Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. RESULTS: No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). CONCLUSION: The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance.
Assuntos
Fita Atlética , Propriocepção/fisiologia , Humanos , Masculino , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
ABSTRACT Objectives The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. Method Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. Results No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). Conclusion The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance.