RESUMO
Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is challenging, and aside from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n = 138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA-sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. Since discrete classes do not adequately capture grading of these tumours, we utilised DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) based on classification scores from a CNS-tumour classifier. CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with (i) upregulation of cell cycling genes; (ii) downregulation of glial differentiation genes; (iii) upregulation of embryonic development genes (e.g. HOX, PAX, and TBX) and (iv) upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes. Higher grade IDH-mutant astrocytomas have DNA-methylation signatures that, on the RNA level, are associated with increased cell cycling, tumour cell de-differentiation and extracellular matrix remodelling. These combined molecular signatures can serve as an objective marker for grading of IDH-mutant astrocytomas.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Metilação de DNA , Epigênese Genética , Isocitrato Desidrogenase , Mutação , Humanos , Astrocitoma/genética , Astrocitoma/patologia , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA/genética , Mutação/genética , Epigênese Genética/genética , Feminino , Masculino , Desenvolvimento Embrionário/genética , Pessoa de Meia-Idade , Adulto , Gradação de TumoresRESUMO
The standard of care for adult patients with gliomas, glioneuronal and neuronal tumors consists of combinations of surgery, radiotherapy, and chemotherapy. For many systemic cancers, targeted treatments are a major part of the standard treatment, however, the predictive significance of most of the targets for treatment in systemic cancer are less well established in central nervous system (CNS) tumors . In 2023 the EANO Guideline Committee presented evidence based recommendations for rational testing of molecular targets for targeted treatments. From all targets reviewed, only testing for BRAF V600E mutations was of proven clinical benefit; despite regulatory approvals for tumor agnostic treatment of NTRK gene fusions and high Tumor Mutational Burden (TMB) for patients with adult brain tumors, the evidence of clinical benefit for patients was still limited . This guideline has a modular structure, allowing regular updating of individual sections and adding new ones. The present version (Update 1) presents a review of the rationale of testing for PTEN, H3F3A, MTAP, RET and IDH, and presents an update of the text on TMB high and mismatch repair deficiency. It also presents an overview of therapeutic yield of routine next generation sequencing for mutations and fusion detection. The supplement accompanying this version contains the in depth review of all targets, whereas in the main manuscript the final recommendations of the revised and new targets are presented. Updates will be made on a regular basis.
RESUMO
PURPOSE: IDH-mutant glioma is classified as oligodendroglioma or astrocytoma based on 1p19q-codeletion. Whether prognostic factors are similar between these tumor types is not well understood. EXPERIMENTAL DESIGN: Retrospective cohort study. Molecular characterization was performed with targeted next-generation sequencing. Tumor volumes were calculated using semiautomatic 3D segmentation on all pre- and post-operative MRI scans. Overall survival was assessed with the Cox-proportional hazards model. RESULTS: A total of 383 patients with newly diagnosed IDH-mutant glioma were followed up for a median of 7.2 years. Grades 3 and 4 patients had significantly lower Karnofsky performance, with tumors having more contrast enhancement. Patients also received more aggressive postsurgery treatment. Postoperative tumor volume is significantly and independently associated with survival (HR, per cm3 1.19; 95% CI, 1.03-1.39) in IDH-mutant glioma. A separate analysis of oligodendroglioma and astrocytoma showed a significant association of postoperative tumor volume in astrocytoma but not in oligodendroglioma. Higher age and histologic tumor grade were associated with worse survival in patients with oligodendroglioma but not with astrocytoma. CONCLUSIONS: Our data support an initial strategy of extensive resection in patients with oligodendroglioma and astrocytoma. Other important prognostic factors differ between these tumor types, urging researchers and clinicians to keep treating these tumors as separate entities.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Isocitrato Desidrogenase , Mutação , Gradação de Tumores , Oligodendroglioma , Humanos , Feminino , Oligodendroglioma/genética , Oligodendroglioma/patologia , Oligodendroglioma/cirurgia , Oligodendroglioma/mortalidade , Masculino , Astrocitoma/patologia , Astrocitoma/genética , Astrocitoma/cirurgia , Astrocitoma/mortalidade , Astrocitoma/diagnóstico por imagem , Pessoa de Meia-Idade , Prognóstico , Isocitrato Desidrogenase/genética , Adulto , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico , Estudos Retrospectivos , Idoso , Fatores Etários , Imageamento por Ressonância Magnética/métodos , Carga TumoralRESUMO
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Mutação , Gradação de Tumores , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Glioma/genética , Glioma/tratamento farmacológico , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Fatores Etários , Tomada de Decisão Clínica , Inibidores Enzimáticos/uso terapêuticoRESUMO
L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare neurometabolic disorder characterized by accumulation of L2-hydroxyglutarate (L-2-HG) due to mutations in the L2HGDH gene. L-2-HGA patients have a significantly increased lifetime risk of central nervous system (CNS) tumors. Here, we present a 16-year-old girl with L-2-HGA who developed a tumor in the right cerebral hemisphere, which was discovered after left-sided neurological deficits of the patient. Histologically, the tumor had a high-grade diffuse glioma phenotype. DNA sequencing revealed the inactivating homozygous germline L2HGDH mutation as well as inactivating mutations in TP53, BCOR and NF1. Genome-wide DNA-methylation analysis was unable to classify the tumor with high confidence. More detailed analysis revealed that this tumor clustered amongst IDH-wildtype gliomas by methylation profiling and did not show the glioma CpG island methylator phenotype (G-CIMP) in contrast to IDH-mutant diffuse gliomas with accumulated levels of D-2-HG, the stereoisomer of L-2-HD. These findings were against all our expectations given the inhibitory potential of 2-HG on DNA-demethylation enzymes. Our final integrated histomolecular diagnosis of the tumor was diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype. Due to rapid tumor progression the patient died nine months after initial diagnosis. In this manuscript, we provide extensive molecular characterization of the tumor as well as a literature review focusing on oncogenetic considerations of L-2-HGA-associated CNS tumors.
RESUMO
Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is however difficult and, apart from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. Experimental Design: RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n=138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. We used the DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) that is based on classification scores derived from a CNS-tumor classifier. We found that the CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with i) an upregulation of cell cycling genes; ii) a downregulation of glial differentiation genes; iii) an upregulation of embryonic development genes (e.g. HOX, PAX and TBX) and iv) an upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes.
RESUMO
Tumor growth models have the potential to model and predict the spatiotemporal evolution of glioma in individual patients. Infiltration of glioma cells is known to be faster along the white matter tracts, and therefore structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) can be used to inform the model. However, applying and evaluating growth models in real patient data is challenging. In this work, we propose to formulate the problem of tumor growth as a ranking problem, as opposed to a segmentation problem, and use the average precision (AP) as a performance metric. This enables an evaluation of the spatial pattern that does not require a volume cut-off value. Using the AP metric, we evaluate diffusion-proliferation models informed by structural MRI and DTI, after tumor resection. We applied the models to a unique longitudinal dataset of 14 patients with low-grade glioma (LGG), who received no treatment after surgical resection, to predict the recurrent tumor shape after tumor resection. The diffusion models informed by structural MRI and DTI showed a small but significant increase in predictive performance with respect to homogeneous isotropic diffusion, and the DTI-informed model reached the best predictive performance. We conclude there is a significant improvement in the prediction of the recurrent tumor shape when using a DTI-informed anisotropic diffusion model with respect to istropic diffusion, and that the AP is a suitable metric to evaluate these models. All code and data used in this publication are made publicly available.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Imagem de Tensor de Difusão/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Imageamento por Ressonância Magnética , AnisotropiaRESUMO
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE: Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.
Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Humanos , Neoplasias Encefálicas/patologia , Epigênese Genética , Epigenômica , Glioma/patologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Microambiente TumoralRESUMO
Background: The T2-FLAIR mismatch sign is defined by signal loss of the T2-weighted hyperintense area with Fluid-Attenuated Inversion Recovery (FLAIR) on magnetic resonance imaging, causing a hypointense region on FLAIR. It is a highly specific diagnostic marker for IDH-mutant astrocytoma and is postulated to be caused by intercellular microcystic change in the tumor tissue. However, not all IDH-mutant astrocytomas show this mismatch sign and some show the phenomenon in only part of the lesion. The aim of the study is to determine whether the T2-FLAIR mismatch phenomenon has any prognostic value beyond initial noninvasive molecular diagnosis. Methods: Patients initially diagnosed with histologically lower-grade (2 or 3) IDH-mutant astrocytoma and with at least 2 surgical resections were included in the GLASS-NL cohort. T2-FLAIR mismatch was determined, and the growth pattern of the recurrent tumor immediately before the second resection was annotated as invasive or expansive. The relation between the T2-FLAIR mismatch sign and tumor grade, microcystic change, overall survival (OS), and other clinical parameters was investigated both at first and second resection. Results: The T2-FLAIR mismatch sign was significantly related to Grade 2 (80% vs 51%), longer post-resection median OS (8.3 vs 5.2 years), expansive growth, and lower age at second resection. At first resection, no relation was found between the mismatch sign and OS. Microcystic change was associated with areas of T2-FLAIR mismatch. Conclusions: T2-FLAIR mismatch in IDH-mutant astrocytomas is correlated with microcystic change in the tumor tissue, favorable prognosis, and Grade 2 tumors at the time of second resection.
RESUMO
The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10-20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Terapia Combinada , Imunoterapia/métodos , Mutação , Microambiente TumoralRESUMO
In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Patologia Molecular , Mutação , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Organização Mundial da SaúdeRESUMO
A better understanding of transcriptional evolution of IDH-wild-type glioblastoma may be crucial for treatment optimization. Here, we perform RNA sequencing (RNA-seq) (n = 322 test, n = 245 validation) on paired primary-recurrent glioblastoma resections of patients treated with the current standard of care. Transcriptional subtypes form an interconnected continuum in a two-dimensional space. Recurrent tumors show preferential mesenchymal progression. Over time, hallmark glioblastoma genes are not significantly altered. Instead, tumor purity decreases over time and is accompanied by co-increases in neuron and oligodendrocyte marker genes and, independently, tumor-associated macrophages. A decrease is observed in endothelial marker genes. These composition changes are confirmed by single-cell RNA-seq and immunohistochemistry. An extracellular matrix-associated gene set increases at recurrence and bulk, single-cell RNA, and immunohistochemistry indicate it is expressed mainly by pericytes. This signature is associated with significantly worse survival at recurrence. Our data demonstrate that glioblastomas evolve mainly by microenvironment (re-)organization rather than molecular evolution of tumor cells.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Microambiente Tumoral/genética , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia/genética , Perfilação da Expressão Gênica , TranscriptomaRESUMO
Spatial transcriptomics is a novel technique that provides RNA-expression data with tissue-contextual annotations. Quality assessments of such techniques using end-user generated data are often lacking. Here, we evaluated data from the NanoString GeoMx Digital Spatial Profiling (DSP) platform and standard processing pipelines. We queried 72 ROIs from 12 glioma samples, performed replicate experiments of eight samples for validation, and evaluated five external datasets. The data consistently showed vastly different signal intensities between samples and experimental conditions that resulted in biased analysis. We evaluated the performance of alternative normalization strategies and show that quantile normalization can adequately address the technical issues related to the differences in data distributions. Compared to bulk RNA sequencing, NanoString DSP data show a limited dynamic range which underestimates differences between conditions. Weighted gene co-expression network analysis allowed extraction of gene signatures associated with tissue phenotypes from ROI annotations. Nanostring GeoMx DSP data therefore require alternative normalization methods and analysis pipelines.
RESUMO
The mainstay of treatment for adult patients with gliomas, glioneuronal and neuronal tumors consists of combinations of surgery, radiotherapy, and chemotherapy. For many systemic cancers, targeted treatments are a part of the standard of care, however, the predictive significance of most of these targets in central nervous system (CNS) tumors remains less well-studied. Despite that, there is increasing use of advanced molecular diagnostics that identify potential targets, and tumor-agnostic regulatory approvals on targets also present in CNS tumors have been granted. This raises the question of when and for which targets it is meaningful to test in adult patients with CNS tumors. This evidence-based guideline reviews the evidence available for targeted treatment for alterations in the RAS/MAPK pathway (BRAF, NF1), in growth factor receptors (EGFR, ALK, fibroblast growth factor receptor (FGFR), neurotrophic tyrosine receptor kinase (NTRK), platelet-derived growth factor receptor alpha, and ROS1), in cell cycle signaling (CDK4/6, MDM2/4, and TSC1/2) and altered genomic stability (mismatch repair, POLE, high tumor mutational burden (TMB), homologous recombination deficiency) in adult patients with gliomas, glioneuronal and neuronal tumors. At present, targeted treatment for BRAF p.V600E alterations is to be considered part of the standard of care for patients with recurrent gliomas, pending regulatory approval. For approved tumor agnostic treatments for NTRK fusions and high TMB, the evidence for efficacy in adult patients with CNS tumors is very limited, and treatment should preferably be given within prospective clinical registries and trials. For targeted treatment of CNS tumors with FGFR fusions or mutations, clinical trials are ongoing to confirm modest activity so far observed in basket trials. For all other reviewed targets, evidence of benefit in CNS tumors is currently lacking, and testing/treatment should be in the context of available clinical trials.
Assuntos
Glioma , Proteínas Tirosina Quinases , Humanos , Adulto , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Prospectivos , Biomarcadores Tumorais/genética , Proteínas Proto-Oncogênicas , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Receptores Proteína Tirosina Quinases , Terapia de Alvo MolecularRESUMO
BACKGROUND: Gliomas with IDH1/2 mutations without 1p19q codeletion have been identified as the distinct diagnostic entity of IDH mutant astrocytoma (IDHmut astrocytoma). Homozygous deletion of Cyclin-dependent kinase 4 inhibitor A/B (CDKN2A/B) has recently been incorporated in the grading of these tumors. The question of whether histologic parameters still contribute to prognostic information on top of the molecular classification, remains unanswered. Here we evaluated consensus histologic parameters for providing additional prognostic value in IDHmut astrocytomas. METHODS: An international panel of seven neuropathologists scored 13 well-defined histologic features in virtual microscopy images of 192 IDHmut astrocytomas from EORTC trial 22033-26033 (low-grade gliomas) and 263 from EORTC 26053 (CATNON) (1p19q non-codeleted anaplastic glioma). For 192 gliomas the CDKN2A/B status was known. Consensus (agreementâ ≥â 4/7 panelists) histologic features were tested together with homozygous deletion (HD) of CDKN2A/B for independent prognostic power. RESULTS: Among consensus histologic parameters, the mitotic count (cut-off of 2 mitoses per 10 high power fields standardized to a field diameter of 0.55 mm and an area of 0.24 mm2) significantly influences PFS (Pâ =â .0098) and marginally the OS (Pâ =â .07). Mitotic count also significantly affects the PFS of tumors with HD CDKN2A/B, but not the OS, possibly due to limited follow-up data. CONCLUSION: The mitotic index (cut-off 2 per 10 40× HPF) is of prognostic significance in IDHmut astrocytomas without HD CDKN2A/B. Therefore, the mitotic index may direct the therapeutic approach for patients with IDHmut astrocytomas with native CDKN2A/B status.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Neoplasias Encefálicas/patologia , Homozigoto , Consenso , Deleção de Sequência , Glioma/patologia , Astrocitoma/genética , Astrocitoma/patologia , Mutação , Isocitrato Desidrogenase/genética , Inibidor p16 de Quinase Dependente de Ciclina/genéticaRESUMO
BACKGROUND: Accurate characterization of glioma is crucial for clinical decision making. A delineation of the tumor is also desirable in the initial decision stages but is time-consuming. Previously, deep learning methods have been developed that can either non-invasively predict the genetic or histological features of glioma, or that can automatically delineate the tumor, but not both tasks at the same time. Here, we present our method that can predict the molecular subtype and grade, while simultaneously providing a delineation of the tumor. METHODS: We developed a single multi-task convolutional neural network that uses the full 3D, structural, preoperative MRI scans to predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor, while simultaneously segmenting the tumor. We trained our method using a patient cohort containing 1508 glioma patients from 16 institutes. We tested our method on an independent dataset of 240 patients from 13 different institutes. RESULTS: In the independent test set, we achieved an IDH-AUC of 0.90, an 1p/19q co-deletion AUC of 0.85, and a grade AUC of 0.81 (grade II/III/IV). For the tumor delineation, we achieved a mean whole tumor Dice score of 0.84. CONCLUSIONS: We developed a method that non-invasively predicts multiple, clinically relevant features of glioma. Evaluation in an independent dataset shows that the method achieves a high performance and that it generalizes well to the broader clinical population. This first-of-its-kind method opens the door to more generalizable, instead of hyper-specialized, AI methods.
Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética , Mutação , Gradação de TumoresRESUMO
BACKGROUND: Androgen receptor (AR) ligand-binding domain (LBD) mutations occur in ~20% of all castration-resistant prostate cancer (CRPC) patients. These mutations confer ligand promiscuity, but the affinity for many steroid hormone pathway intermediates is unknown. In this study, we investigated the stimulation of clinically relevant AR-LBD mutants by endogenous and exogenous steroid hormones present in CRPC patients to unravel their potential contribution to AR pathway reactivation. METHODS: A meta-analysis of studies reporting untargeted analysis of AR mutants was performed to identify clinically relevant AR-LBD mutations. Using luciferase reporter and quantitative fluorescent microscopy, these AR mutants were screened for sensitivity for various endogenous steroids and synthetic glucocorticoids used in the treatment of CRPC. RESULTS: The meta-analysis revealed that ARL702H (3.4%), ARH875Y (4.9%), and ART878A (4.4%) were the most prevalent AR-LBD mutations across 1614 CRPC patients from 21 unique studies. Testosterone (EC50: 0.22 nmol/L) and 11-ketotestosterone (11KT, EC50: 0.74 nmol/L) displayed subnanomolar affinity for ARWT. The p.H875Y mutation selectively increased sensitivity of the AR for 11KT (EC50: 0.15 nmol/L, p < 0.05 vs ARWT), whereas p.L702H decreased sensitivity for 11KT by almost 50-fold. While cortisol and prednisolone both stimulate ARL702H, dexamethasone importantly does not. CONCLUSION: Both testosterone and 11KT effectively contribute to ARWT activation, while selective sensitization positions 11KT as a more prominent activator of ARH875Y. Dexamethasone may be a suitable alternative to prednisolone and should be explored in patients bearing the ARL702H.
Assuntos
Androgênios , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Androgênios/genética , Androgênios/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Glucocorticoides/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Ligantes , Testosterona/metabolismo , Esteroides/metabolismo , Mutação , Prednisolona/farmacologia , Dexametasona/farmacologiaRESUMO
BACKGROUND: IDH1/2 wildtype (IDHwt) glioma WHO grade 2 and 3 patients with pTERT mutation and/or EGFR amplification and/orâ +â 7/-10 chromosome gain/loss have a similar overall survival time as IDHwt glioblastoma patients, and are both considered glioblastoma IDHwt according to the WHO 2021 classification. However, differences in seizure onset have been observed. This study aimed to compare the course of epilepsy in the 2 glioblastoma subtypes. METHODS: We analyzed epilepsy data of an existing cohort including IDHwt histologically lower-grade glioma WHO grade 2 and 3 with molecular glioblastoma-like profile (IDHwt hLGG) and IDHwt glioblastoma patients. Primary outcome was the incidence proportion of epilepsy during the disease course. Secondary outcomes included, among others, onset of epilepsy, number of seizure days, and antiepileptic drug (AED) polytherapy. RESULTS: Out of 254 patients, 78% (50/64) IDHwt hLGG and 68% (129/190) IDHwt glioblastoma patients developed epilepsy during the disease (Pâ =â .121). Epilepsy onset before histopathological diagnosis occurred more frequently in IDHwt hLGG compared to IDHwt glioblastoma patients (90% vs 60%, Pâ <â .001), with a significantly longer median time to diagnosis (3.5 vs 1.3 months, Pâ <â .001). Median total seizure days was also longer for IDHwt hLGG patients (7.0 vs 3.0, Pâ =â .005), and they received more often AED polytherapy (32% vs 17%, Pâ =â .028). CONCLUSIONS: Although the incidence proportion of epilepsy during the entire disease course is similar, IDHwt hLGG patients show a significantly higher incidence of epilepsy before diagnosis and a significantly longer median time between first seizure and diagnosis compared to IDHwt glioblastoma patients, indicating a distinct clinical course.
Assuntos
Neoplasias Encefálicas , Epilepsia , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Glioma/patologia , Mutação , Convulsões , Anticonvulsivantes , Isocitrato Desidrogenase/genéticaRESUMO
A major obstacle in glioma research is the lack of in vitro models that can retain cellular features of glioma cells in vivo. To overcome this limitation, a 3D-engineered scaffold, fabricated by two-photon polymerization, is developed as a cell culture model system to study patient-derived glioma cells. Scanning electron microscopy, (live cell) confocal microscopy, and immunohistochemistry are employed to assess the 3D model with respect to scaffold colonization, cellular morphology, and epidermal growth factor receptor localization. Both glioma patient-derived cells and established cell lines successfully colonize the scaffolds. Compared to conventional 2D cell cultures, the 3D-engineered scaffolds more closely resemble in vivo glioma cellular features and allow better monitoring of individual cells, cellular protrusions, and intracellular trafficking. Furthermore, less random cell motility and increased stability of cellular networks is observed for cells cultured on the scaffolds. The 3D-engineered glioma scaffolds therefore represent a promising tool for studying brain cancer mechanobiology as well as for drug screening studies.