RESUMO
Acoustophoretic forces have been successfully implemented into droplet-based microfluidic devices to manipulate droplets. These acoustophoretic forces in droplet microfluidic devices are typically generated as in acoustofluidic devices through transducer actuation of a piezoelectric substrate such as lithium niobate (LiNbO3), which is inherently accompanied by the emergence of electrical fields. Understanding acoustophoretic versus dielectrophoretic forces produced by electrodes and transducers within active microfluidic devices is important for the optimization of device performance during design iterations. In this case study, we design microfluidic devices with a droplet injection module and report an experimental strategy to deduce the respective contribution of the acoustophoretic versus dielectrophoretic forces for the observed droplet injection. Our PDMS-based devices comprise a standard oil-in-water droplet-generating module connected to a T-junction injection module featuring actuating electrodes. We use two different electrode geometries produced within the same PDMS slab as the droplet production/injection channels by filling low-melting-point metal alloy into channels that template the electrode geometries. When these electrodes are constructed on LiNbO3 as the substrate, they have a dual function as a piezoelectric transducer, which we call embedded liquid metal interdigitated transducers (elmIDTs). To decipher the contribution of acoustophoretic versus dielectrophoretic forces, we build the same devices on either piezoelectric LiNbO3 or nonpiezo active glass substrates with different combinations of physical device characteristics (i.e., elmIDT geometry and alignment) and operate in a range of phase spaces (i.e., frequency, voltage, and transducer polarity). We characterize devices using techniques such as laser Doppler vibrometry (LDV) and infrared imaging, along with evaluating droplet injection for our series of device designs, constructions, and operating parameters. Although we find that LiNbO3 device designs generate acoustic fields, we demonstrate that droplet injection occurs only due to dielectrophoretic forces. We deduce that droplet injection is caused by the coupled dielectrophoretic forces arising from the operation of elmIDTs rather than by acoustophoretic forces for this specific device design. We arrive at this conclusion because equivalent droplet injection occurs without the presence of an acoustic field using the same electrode designs on nonpiezo active glass substrate devices. This work establishes a methodology to pinpoint the major contributing force of droplet manipulation in droplet-based acoustomicrofluidics.
RESUMO
Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in "one shot." This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.
Assuntos
Holografia , Som , Engenharia Tecidual , Acústica , Hidrogéis/químicaRESUMO
Imitation of cellular processes in cell-like compartments is a current research focus in synthetic biology. Here, a method is introduced for assembling an artificial cytoskeleton in a synthetic cell model system based on a poly(N-isopropyl acrylamide) (PNIPAM) composite material. Toward this end, a PNIPAM-based composite material inside water-in-oil droplets that are stabilized with PNIPAM-functionalized and commercial fluorosurfactants is introduced. The temperature-mediated contraction/release behavior of the PNIPAM-based cytoskeleton is investigated. The reversibility of the PNIPAM transition is further examined in bulk and in droplets and it could be shown that hydrogel induced deformation could be used to controllably manipulate droplet-based synthetic cell motility upon temperature changes. It is envisioned that a combination of the presented artificial cytoskeleton with naturally occurring components might expand the bandwidth of the bottom-up synthetic biology.
Assuntos
Células Artificiais , Hidrogéis , Água , Temperatura , CitoesqueletoRESUMO
Cell migration plays an essential role in wound healing and inflammatory processes inside the human body. Peripheral blood neutrophils, a type of polymorphonuclear leukocyte (PMN), are the first cells to be activated during inflammation and subsequently migrate toward an injured tissue or infection site. This response is dependent on both biochemical signaling and the extracellular environment, one aspect of which includes increased temperature in the tissues surrounding the inflammation site. In our study, we analyzed temperature-dependent neutrophil migration using differentiated HL-60 cells. The migration speed of differentiated HL-60 cells was found to correlate positively with temperature from 30 to 42 °C, with higher temperatures inducing a concomitant increase in cell detachment. The migration persistence time of differentiated HL-60 cells was higher at lower temperatures (30-33 °C), while the migration persistence length stayed constant throughout the temperature range. Coupled with the increased speed observed at high temperatures, this suggests that neutrophils are primed to migrate more effectively at the elevated temperatures characteristic of inflammation. Temperature gradients exist on both cell and tissue scales. Taking this into consideration, we also investigated the ability of differentiated HL-60 cells to sense and react to the presence of temperature gradients, a process known as thermotaxis. Using a two-dimensional temperature gradient chamber with a range of 27-43 °C, we observed a migration bias parallel to the gradient, resulting in both positive and negative thermotaxis. To better mimic the extracellular matrix (ECM) environment in vivo, a three-dimensional collagen temperature gradient chamber was constructed, allowing observation of biased neutrophil-like differentiated HL-60 migration toward the heat source.
Assuntos
Inflamação , Neutrófilos , Movimento Celular , Células HL-60 , Humanos , TemperaturaRESUMO
By using electrostatic interactions as driving force to assemble vesicles, the droplet-stabilized method was recently applied to reconstitute and encapsulate proteins, or compartments, inside giant unilamellar vesicles (GUVs) to act as minimal synthetic cells. However, the droplet-stabilized approach exhibits low production efficiency associated with the troublesome release of the GUVs from the stabilized droplets, corresponding to a major hurdle for the droplet-stabilized approach. Herein, we report the use of pH as a potential trigger to self-assemble droplet-stabilized GUVs (dsGUVs) by either bulk or droplet-based microfluidics. Moreover, pH enables the generation of compartmentalized GUVs with flexibility and robustness. By co-encapsulating pH-sensitive small unilamellar vesicles (SUVs), negatively charged SUVs, and/or proteins, we show that acidification of the droplets efficiently produces dsGUVs while sequestrating the co-encapsulated material. Most importantly, the pH-mediated assembly of dsGUVs significantly improves the production efficiency of free-standing GUVs (i.e., released from the stabilizing-droplets) compared to its previous implementation.
Assuntos
Células Artificiais , Concentração de Íons de Hidrogênio , Microfluídica , Polímeros , Lipossomas Unilamelares/metabolismoRESUMO
Droplet-based microfluidics have emerged as an important tool for diverse biomedical and biological applications including, but not limited to, drug screening, cellular analysis, and bottom-up synthetic biology. Each microfluidic water-in-oil droplet contains a well-defined biocontent that, following its manipulation/maturation, has to be released into a physiological environment toward possible end-user investigations. Despite the progress made in recent years, considerable challenges still loom at achieving a precise control over the content release with sufficient speed and sensitivity. Here, we present a quantitative study in which we compare the effectiveness and biocompatibility of chemical and physical microfluidic release methods. We show the advantages of electrocoalescence of water-in-oil droplets in terms of high-throughput release applications. Moreover, we apply programmable DNA nanotechnology to achieve a segregation of the biochemical content within the droplets for the controlled filtration of the encapsulated materials. We envision that the developed bifunctional microfluidic approach, capable of content segregation and selective release, will expand the microfluidic toolbox for cell biology, synthetic biology, and biomedical applications.
RESUMO
Molecular motor proteins form the basis of cellular dynamics. Recently, notable efforts have led to the creation of their DNA-based mimics, which can carry out complex nanoscale motion. However, such functional analogues have not yet been integrated or operated inside synthetic cells toward the goal of realizing artificial biological systems entirely from the bottom-up. In this Letter, we encapsulate and actuate DNA-assembled dynamic nanostructures inside cell-sized microfluidic compartments. These encapsulated DNA nanostructures not only exhibit structural reconfigurability owing to their pH-sensitive molecular switches upon external stimuli but also possess optical feedback enabled by the integrated plasmonic probes. In particular, we demonstrate the power of microfluidic compartmentalization for achieving on-chip plasmonic enantiomer separation and substrate filtration. Our work exemplifies that the two unique tools, droplet-based microfluidics and DNA technology, offering high precision on the microscale and nanoscale, respectively, can be brought together to greatly enrich the complexity and diversity of functional synthetic systems.
Assuntos
DNA/química , Ouro/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Nanoestruturas/químicaRESUMO
Fluorescence correlation spectroscopy (FCS) is a sensitive technique commonly applied for studying the dynamics of nanoscale-labeled objects in solution. Current analysis of FCS data is largely based on the assumption that the labeled objects are stochastically displaced due to Brownian motion. However, this assumption is often invalid for microscale objects, since the motion of these objects is dominated by Stokes drag and settling or rising effects, rather than stochastic Brownian motion. To utilize the power of FCS for systems with nonstochastic displacements of objects, the collection and analysis of FCS data have to be reconceptualized. Here, we extended the applicability of FCS for the detection and analysis of periodically passing objects. Toward this end, we implemented droplet-based microfluidics, in which monodispersed droplets containing fluorescent marker are flowing equally spaced within microchannels. We show by simulations and experiments that FCS can sensitively quantify the flow-rates, variability, and content of rapidly passing droplets. This information can be derived at high temporal resolution, based on the intensity fluctuations generated by only 5-10 passing droplets. Moreover, by utilizing the periodicity of the flowing droplets for noise reduction by averaging, FCS can monitor accurately the droplets flow even if their fluorescence intensity is negligible. Hence, extending FCS for periodically passing objects converts it into a powerful analytical tool for high-throughput droplet-based microfluidics. Moreover, based on the principles described here, FCS can be straightforwardly applied for a variety of systems in which the passing of objects is periodic rather than stochastic.