Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9990, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693329

RESUMO

Mass-deployable implementations for quantum communication require compact, reliable, and low-cost hardware solutions for photon generation, control and analysis. We present a fiber-pigtailed hybrid photonic circuit comprising nonlinear waveguides for photon-pair generation and a polymer interposer reaching 68 dB of pump suppression and photon separation based on a polarizing beam splitter with > 25 dB polarization extinction ratio. The optical stability of the hybrid assembly enhances the quality of the entanglement, and the efficient background suppression and photon routing further reduce accidental coincidences. We thus achieve a 96 - 8 + 3 % concurrence and a 96 - 5 + 2 % fidelity to a Bell state. The generated telecom-wavelength, time-bin entangled photon pairs are ideally suited for distributing Bell pairs over fiber networks with low dispersion.

2.
Opt Express ; 31(4): 5290-5296, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823813

RESUMO

A limitation of free-space optical communications is the ease with which the information can be intercepted. This limitation can be overcome by hiding the information within background optical noise. We demonstrate the transfer of images over free-space using a photon-pair source emitting two correlated beams. One of these beams contains image information, to which noise is added, and the other correlated beam is used as a heralding trigger so that the intended recipient can differentiate this image signal from the background noise. The system uses spontaneous parametric down-conversion to create photon-pairs with a wide spectral bandwidth and a gated intensified camera to extract the image from the background noise. The high-dimensionality of the image space means that the information content can be many bits per detected photon, whereas the heralding photon can be restricted to a single spatial-mode within a secure fiber which itself could be protected against interception by traditional low-dimensionality quantum key protocols.

3.
Opt Express ; 28(25): 37118-37128, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379552

RESUMO

Quantum light generated in non-degenerate squeezers has many applications such as sub-shot-noise transmission measurements to maximise the information extracted by one photon or quantum illumination to increase the probability in target detection. However, any application thus far fails to consider the thermal characteristics of one half of the bipartite down-converted photon state often used in these experiments. We show here that a maximally mixed state, normally viewed as nuisance, can indeed be used to extract information about the position of an object while at the same time providing efficient camouflaging against other thermal or background light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA