Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614181

RESUMO

This study involved creating oligomeric conjugates of 3-hydroxy fatty acids and diclofenac, named Dic-oligo(3HAs). Advanced NMR techniques confirmed no free diclofenac in the mix. We tested diclofenac release under conditions resembling healthy and chronic wound skin. These oligomers were used to make P(3HO) blends, forming patches for drug delivery. Their preparation used the solvent casting/porogen leaching (SCPL) method. The patches' properties like porosity, roughness, and wettability were thoroughly analysed. Antimicrobial assays showed that Dic-oligo(3HAs) exhibited antimicrobial activity against reference (S. aureus, S. epidermis, S. faecalis) and clinical (Staphylococcus spp.) strains. Human keratinocytes (HaCaT) cell line tests, as per ISO 10993-5, showed no toxicity. A clear link between material roughness and HaCaT cell adhesion was found. Deep cell infiltration was verified using DAPI and phalloidin staining, observed under confocal microscopy. SEM also confirmed HaCaT cell growth on these scaffolds. The strong adhesion and proliferation of HaCaT cells on these materials indicate their potential as wound dressing layers. Additionally, the successful diclofenac release tests point to their applicability in treating both normal and chronic wounds.


Assuntos
Diclofenaco , Pele , Diclofenaco/farmacologia , Diclofenaco/química , Humanos , Pele/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/citologia , Células HaCaT , Cicatrização/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fenômenos Químicos , Linhagem Celular , Polímeros/química , Porosidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
2.
J Funct Biomater ; 14(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36662087

RESUMO

In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.

3.
Trends Mol Med ; 28(4): 331-342, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35232669

RESUMO

Polyhydroxyalkanoates (PHAs) are sustainable, versatile, biocompatible, and bioresorbable polymers that are suitable for biomedical applications. Produced via bacterial fermentation under nutrient-limiting conditions, they are uncovering a new horizon for devices in biomedical applications. A wide range of cell types including bone, cartilage, nerve, cardiac, and pancreatic cells, readily attach grow and are functional on PHAs. The tuneable physical properties and resorption rates of PHAs provide a toolbox for biomedical engineers in developing devices for hard and soft tissue engineering applications and drug delivery. The versatility of PHAs and the vast range of different PHA-based prototypes are discussed. Current in vitro, ex vivo, and in vivo development work are described and their regulatory approvals are reviewed.


Assuntos
Poli-Hidroxialcanoatos , Bactérias/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/uso terapêutico , Engenharia Tecidual
4.
Front Cardiovasc Med ; 7: 554597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195451

RESUMO

Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA