Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 104(3): 807-824, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37823583

RESUMO

Thiamin is an essential water-soluble B vitamin known for its wide range of metabolic functions and antioxidant properties. Over the past decades, reproductive failures induced by thiamin deficiency have been observed in several salmonid species worldwide, but it is unclear why this micronutrient deficiency arises. Few studies have compared thiamin concentrations in systems of salmonid populations with or without documented thiamin deficiency. Moreover, it is not well known whether and how thiamin concentration changes during the marine feeding phase and the spawning migration. Therefore, samples of Atlantic salmon (Salmo salar) were collected when actively feeding in the open Baltic Sea, after the sea migration to natal rivers, after river migration, and during the spawning period. To compare populations of Baltic salmon with systems without documented thiamin deficiency, a population of landlocked salmon located in Lake Vänern (Sweden) was sampled as well as salmon from Norwegian rivers draining into the North Atlantic Ocean. Results showed the highest mean thiamin concentrations in Lake Vänern salmon, followed by North Atlantic, and the lowest in Baltic populations. Therefore, salmon in the Baltic Sea seem to be consistently more constrained by thiamin than those in other systems. Condition factor and body length had little to no effect on thiamin concentrations in all systems, suggesting that there is no relation between the body condition of salmon and thiamin deficiency. In our large spatiotemporal comparison of salmon populations, thiamin concentrations declined toward spawning in all studied systems, suggesting that the reduction in thiamin concentration arises as a natural consequence of starvation rather than to be related to thiamin deficiency in the system. These results suggest that factors affecting accumulation during the marine feeding phase are key for understanding the thiamin deficiency in salmonids.


Assuntos
Salmo salar , Tiamina , Animais , Tiamina/metabolismo , Salmo salar/metabolismo , Estágios do Ciclo de Vida , Oceanos e Mares , Oceano Atlântico , Rios
2.
Sci Rep ; 13(1): 11865, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481661

RESUMO

The planktonic realm from bacteria to zooplankton provides the baseline for pelagic aquatic food webs. However, multiple trophic levels are seldomly included in time series studies, hampering a holistic understanding of the influence of seasonal dynamics and species interactions on food web structure and biogeochemical cycles. Here, we investigated plankton community composition, focusing on bacterio-, phyto- and large mesozooplankton, and how biotic and abiotic factors correlate at the Linnaeus Microbial Observatory (LMO) station in the Baltic Sea from 2011 to 2018. Plankton communities structures showed pronounced dynamic shifts with recurring patterns. Summarizing the parts of the planktonic microbial food web studied here to total carbon, a picture emerges with phytoplankton consistently contributing > 39% while bacterio- and large mesozooplankton contributed ~ 30% and ~ 7%, respectively, during summer. Cyanophyceae, Actinobacteria, Bacteroidetes, and Proteobacteria were important groups among the prokaryotes. Importantly, Dinophyceae, and not Bacillariophyceae, dominated the autotrophic spring bloom whereas Litostomatea (ciliates) and Appendicularia contributed significantly to the consumer entities together with the more traditionally observed mesozooplankton, Copepoda and Cladocera. Our findings of seasonality in both plankton composition and carbon stocks emphasize the importance of time series analyses of food web structure for characterizing the regulation of biogeochemical cycles and appropriately constraining ecosystem models.


Assuntos
Cadeia Alimentar , Plâncton , Animais , Plâncton/fisiologia , Ecossistema , Zooplâncton , Fitoplâncton , Carbono
3.
J Plankton Res ; 45(2): 360-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37012974

RESUMO

Vitamin B1 (thiamin) is primarily produced by bacteria, phytoplankton and fungi in aquatic food webs and transferred to higher trophic levels by ingestion. However, much remains unknown regarding the dynamics this water-soluble, essential micronutrient; e.g. how it relates to macronutrients (carbon, nitrogen and phosphorous). Nutrient limitation has been found to be related to periods of thiamin deficiency as well as in models. Hence, thiamin transfer to copepods from three phytoplankton species from different taxa was investigated, along with the effect of various nutrient regimes on thiamin content. Nutrient levels did not affect thiamin content of phytoplankton nor the transfer to copepods. Instead, phytoplankton displayed species-specific thiamin and macronutrient contents and whilst a higher thiamin content in the prey lead to higher levels in copepods, the transfer was lower for Skeletonema compared to Dunaliella and Rhodomonas. In all, thiamin transfer to copepods is not only dependent on thiamin content of the prey, but also the edibility and/or digestibility is of importance. Thiamin is essential for all organisms, and this study offers insights into the limited effect of macronutrients on the dynamics and transfer of thiamin in the aquatic food webs.

4.
Front Microbiol ; 13: 834675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212867

RESUMO

Although free-living (FL) and particle-attached (PA) bacteria are recognized as ecologically distinct compartments of marine microbial food-webs, few, if any, studies have determined their dynamics in abundance, function (production, respiration and substrate utilization) and taxonomy over a yearly cycle. In the Baltic Sea, abundance and production of PA bacteria (defined as the size-fraction >3.0 µm) peaked over 3 months in summer (6 months for FL bacteria), largely coinciding with blooms of Chitinophagales (Bacteroidetes). Pronounced changes in the growth efficiency (range 0.05-0.27) of FL bacteria (defined as the size-fraction <3.0 µm) indicated the magnitude of seasonal variability of ecological settings bacteria experience. Accordingly, 16S rRNA gene analyses of bacterial community composition uncovered distinct correlations between taxa, environmental variables and metabolisms, including Firmicutes associated with elevated hydrolytic enzyme activity in winter and Verrucomicrobia with utilization of algal-derived substrates during summer. Further, our results suggested a substrate-controlled succession in the PA fraction, from Bacteroidetes using polymers to Actinobacteria and Betaproteobacteria using monomers across the spring to autumn phytoplankton bloom transition. Collectively, our findings emphasize pronounced seasonal changes in both the composition of the bacterial community in the PA and FL size-fractions and their contribution to organic matter utilization and carbon cycling. This is important for interpreting microbial ecosystem function-responses to natural and human-induced environmental changes.

5.
J Plankton Res ; 42(3): 274-285, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494089

RESUMO

Thiamin (vitamin B1) is primarily produced by bacteria and phytoplankton in aquatic food webs and transferred by ingestion to higher trophic levels. However, much remains unknown regarding production, content and transfer of this water-soluble, essential micronutrient. Hence, the thiamin content of six phytoplankton species from different taxa was investigated, along with the effect of thiamin amendment on thiamin content. Furthermore, thiamin transfer to copepods was estimated in feeding experiments. Prey type, not phytoplankton thiamin content per se, was the most important factor for the transfer of thiamin, as it was lowest from filamentous Cyanophyceae and highest from more easily ingested prey like Dunaliella tertiolecta and Rhodomonas salina. Cyanophyceae had the highest thiamin content of the investigated species, eightfold higher than the lowest. Phytoplankton varied in thiamin content related to the supply of thiamin, where thiamin addition enabled higher thiamin content in some species, while copepod thiamin content was less variable. In all, thiamin transfer is not only dependent on the prey thiamin content, but also the edibility and/or digestibility is of importance. Thiamin is essential for all organisms, and this study constitutes an important building block to understanding the dynamics and transfer of thiamin in the aquatic food web.

6.
PLoS One ; 15(1): e0227714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917814

RESUMO

Vitamin B1 (thiamin) deficiency is an issue periodically affecting a wide range of taxa worldwide. In aquatic pelagic systems, thiamin is mainly produced by bacteria and phytoplankton and is transferred to fish and birds via zooplankton, but there is no general consensus on when or why this transfer is disrupted. We focus on the occurrence in salmon (Salmo salar) of a thiamin deficiency syndrome (M74), the incidence of which is highly correlated among populations derived from different spawning rivers. Here, we show that M74 in salmon is associated with certain large-scale abiotic changes in the main common feeding area of salmon in the southern Baltic Sea. Years with high M74 incidence were characterized by stagnant periods with relatively low salinity and phosphate and silicate concentrations but high total nitrogen. Consequently, there were major changes in phytoplankton and zooplankton, with, e.g., increased abundances of Cryptophyceae, Dinophyceae, Diatomophyceae and Euglenophyceae and Acartia spp. during high M74 incidence years. The prey fish communities also had increased stocks of both herring and sprat in these years. Overall, this suggests important changes in the entire food web structure and nutritional pathways in the common feeding period during high M74 incidence years. Previous research has emphasized the importance of the abundance of planktivorous fish for the occurrence of M74. By using this 27-year time series, we expand this analysis to the entire ecosystem and discuss potential mechanisms inducing thiamin deficiency in salmon.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Cadeia Alimentar , Salmo salar/fisiologia , Deficiência de Tiamina/veterinária , Animais , Monitorização de Parâmetros Ecológicos/tendências , Feminino , Incidência , Oceanos e Mares , Fitoplâncton/química , Tiamina/metabolismo , Deficiência de Tiamina/epidemiologia , Deficiência de Tiamina/etiologia , Zooplâncton/química
7.
Front Microbiol ; 9: 3296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30705671

RESUMO

Marine bacterioplankton are essential in global nutrient cycling and organic matter turnover. Time-series analyses, often at monthly sampling frequencies, have established the paramount role of abiotic and biotic variables in structuring bacterioplankton communities and productivities. However, fine-scale seasonal microbial activities, and underlying biological principles, are not fully understood. We report results from four consecutive years of high-frequency time-series sampling in the Baltic Proper. Pronounced temporal dynamics in most investigated microbial variables were observed, including bacterial heterotrophic production, plankton biomass, extracellular enzyme activities, substrate uptake rate constants of glucose, pyruvate, acetate, amino acids, and leucine, as well as nutrient limitation bioassays. Spring blooms consisting of diatoms and dinoflagellates were followed by elevated bacterial heterotrophic production and abundances. During summer, bacterial productivity estimates increased even further, coinciding with an initial cyanobacterial bloom in early July. However, bacterial abundances only increased following a second cyanobacterial bloom, peaking in August. Uptake rate constants for the different measured carbon compounds varied seasonally and inter-annually and were highly correlated to bacterial productivity estimates, temperature, and cyanobacterial abundances. Further, we detected nutrient limitation in response to environmental conditions in a multitude of microbial variables, such as elevated productivities in nutrient bioassays, changes in enzymatic activities, or substrate preferences. Variations among biotic variables often occurred on time scales of days to a few weeks, yet often spanning several sampling occasions. Such dynamics might not have been captured by sampling at monthly intervals, as compared to more predictable transitions in abiotic variables such as temperature or nutrient concentrations. Our study indicates that high resolution analyses of microbial biomass and productivity parameters can help out in the development of biogeochemical and food web models disentangling the microbial black box.

8.
Ambio ; 44 Suppl 3: 427-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26022325

RESUMO

The microbial part of the pelagic food web is seldom characterized in models despite its major contribution to biogeochemical cycles. In the Baltic Sea, spatial and temporal high frequency sampling over three years revealed changes in heterotrophic bacteria and phytoplankton coupling (biomass and production) related to hydrographic properties of the ecosystem. Phyto- and bacterioplankton were bottom-up driven in both coastal and offshore areas. Cold winter temperature was essential for phytoplankton to conform to the successional sequence in temperate waters. In terms of annual carbon production, the loss of the spring bloom (diatoms and dinoflagellates) after mild winters tended not to be compensated for by other taxa, not even summer cyanobacteria. These results improve our ability to project Baltic Sea ecosystem response to short- and long-term environmental changes.


Assuntos
Fitoplâncton , Biomassa , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA