Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiat Environ Biophys ; 63(2): 181-183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376815

RESUMO

The necessity of precise dosimetry and its documentation in research is less obvious than in medicine and in radiological protection. However, in radiation research, results can only be validated if experiments were carried out with sufficient precision and described with sufficient details, especially information regarding dosimetry. In order to ensure this, an initiative was launched to establish reproducible dosimetry reporting parameters in published studies. Minimum standards for reporting radiation dosimetry information were developed and published in parallel in the International Journal of Radiation Biology and Radiation Research. As editors of Radiation and Environmental Biophysics, we support this initiative and reproduce the agreed minimum irradiation parameters that should be reported in publications on radiation biology submitted to our journal.


Assuntos
Radiometria , Radiometria/normas
5.
Med Phys ; 49(3): 1993-2013, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34426981

RESUMO

Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Protocolos Clínicos , Humanos , Neoplasias/radioterapia , Radiobiologia , Dosagem Radioterapêutica
6.
Radiat Oncol ; 16(1): 159, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412654

RESUMO

BACKGROUND: Invasiveness is a major factor contributing to metastasis of tumour cells. Given the broad variety and plasticity of invasion mechanisms, assessing potential metastasis-promoting effects of irradiation for specific mechanisms is important for further understanding of potential adverse effects of radiotherapy. In fibroblast-led invasion mechanisms, fibroblasts produce tracks in the extracellular matrix in which cancer cells with epithelial traits can follow. So far, the influence of irradiation on this type of invasion mechanisms has not been assessed. METHODS: By matrix-embedding coculture spheroids consisting of breast cancer cells (MCF-7, BT474) and normal fibroblasts, we established a model for fibroblast-led invasion. To demonstrate applicability of this model, spheroid growth and invasion behaviour after irradiation with 5 Gy were investigated by microscopy and image analysis. RESULTS: When not embedded, irradiation caused a significant growth delay in the spheroids. When irradiating the spheroids with 5 Gy before embedding, we find comparable maximum migration distance in fibroblast monoculture and in coculture samples as seen in unirradiated samples. Depending on the fibroblast strain, the number of invading cells remained constant or was reduced. CONCLUSION: In this spheroid model and with the cell lines and fibroblast strains used, irradiation does not have a major invasion-promoting effect. 3D analysis of invasiveness allows to uncouple effects on invading cell number and maximum invasion distance when assessing radiation effects.


Assuntos
Neoplasias da Mama/radioterapia , Fibroblastos/fisiologia , Esferoides Celulares/efeitos da radiação , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Invasividade Neoplásica , Esferoides Celulares/patologia
7.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299263

RESUMO

BACKGROUND: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by single and multiple carbon ions were analyzed in the nuclear chromatin environment by different high-resolution microscopy approaches. MATERIAL AND METHODS: Using the heavy-ion microbeam SNAKE, fibroblast monolayers were irradiated with defined numbers of carbon ions (1/10/100 ions per pulse, ipp) focused to micrometer-sized stripes or spots. Radiation-induced lesions were visualized as DNA damage foci (γH2AX, 53BP1) by conventional fluorescence and stimulated emission depletion (STED) microscopy. At micro- and nanoscale level, DNA double-strand breaks (DSBs) were visualized within their chromatin context by labeling the Ku heterodimer. Single and clustered pKu70-labeled DSBs were quantified in euchromatic and heterochromatic regions at 0.1 h, 5 h and 24 h post-IR by transmission electron microscopy (TEM). RESULTS: Increasing numbers of carbon ions per beam spot enhanced spatial clustering of DNA lesions and increased damage complexity with two or more DSBs in close proximity. This effect was detectable in euchromatin, but was much more pronounced in heterochromatin. Analyzing the dynamics of damage processing, our findings indicate that euchromatic DSBs were processed efficiently and repaired in a timely manner. In heterochromatin, by contrast, the number of clustered DSBs continuously increased further over the first hours following IR exposure, indicating the challenging task for the cell to process highly clustered DSBs appropriately. CONCLUSION: Increasing numbers of carbon ions applied to sub-nuclear chromatin regions enhanced the spatial clustering of DSBs and increased damage complexity, this being more pronounced in heterochromatic regions. Inefficient processing of clustered DSBs may explain the enhanced therapeutic efficacy of particle-based radiotherapy in cancer treatment.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA/efeitos da radiação , Radioterapia com Íons Pesados/efeitos adversos , Técnicas de Cultura de Células , Análise por Conglomerados , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Eucromatina/genética , Eucromatina/efeitos da radiação , Fibroblastos , Radioterapia com Íons Pesados/métodos , Íons Pesados/efeitos adversos , Heterocromatina/genética , Heterocromatina/efeitos da radiação , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/efeitos da radiação , Transferência Linear de Energia/efeitos da radiação , Microscopia Eletrônica/métodos , Radiação Ionizante
8.
Front Oncol ; 11: 612354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816244

RESUMO

Radiotherapy is an essential component of multi-modality treatment of glioblastoma (GBM). However, treatment failure and recurrence are frequent and give rise to the dismal prognosis of this aggressive type of primary brain tumor. A high level of inherent treatment resistance is considered to be the major underlying reason, stemming from constantly activated DNA damage response (DDR) mechanisms as a consequence of oncogene overexpression, persistent replicative stress, and other so far unknown reasons. The molecular chaperone heat shock protein 90 (HSP90) plays an important role in the establishment and maintenance of treatment resistance, since it crucially assists the folding and stabilization of various DDR regulators. Accordingly, inhibition of HSP90 represents a multi-target strategy to interfere with DDR function and to sensitize cancer cells to radiotherapy. Using NW457, a pochoxime-based HSP90 inhibitor with favorable brain pharmacokinetic profile, we show here that HSP90 inhibition at low concentrations with per se limited cytotoxicity leads to downregulation of various DNA damage response factors on the protein level, distinct transcriptomic alterations, impaired DNA damage repair, and reduced clonogenic survival in response to ionizing irradiation in glioblastoma cells in vitro. In vivo, HSP90 inhibition by NW457 improved the therapeutic outcome of fractionated CBCT-based irradiation in an orthotopic, syngeneic GBM mouse model, both in terms of tumor progression and survival. Nevertheless, in view of the promising in vitro results the in vivo efficacy was not as strong as expected, although apart from the radiosensitizing effects HSP90 inhibition also reduced irradiation-induced GBM cell migration and tumor invasiveness. Hence, our findings identify the combination of HSP90 inhibition and radiotherapy in principle as a promising strategy for GBM treatment whose performance needs to be further optimized by improved inhibitor substances, better formulations and/or administration routes, and fine-tuned treatment sequences.

9.
Rev Sci Instrum ; 91(6): 063303, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611048

RESUMO

The development from single shot basic laser plasma interaction research toward experiments in which repetition rated laser-driven ion sources can be applied requires technological improvements. For example, in the case of radio-biological experiments, irradiation duration and reproducible controlled conditions are important for performing studies with a large number of samples. We present important technological advancements of recent years at the ATLAS 300 laser in Garching near Munich since our last radiation biology experiment. Improvements range from target positioning over proton transport and diagnostics to specimen handling. Exemplarily, we show the current capabilities by performing an application oriented experiment employing the zebrafish embryo model as a living vertebrate organism for laser-driven proton irradiation. The size, intensity, and energy of the laser-driven proton bunches resulted in evaluable partial body changes in the small (<1 mm) embryos, confirming the feasibility of the experimental system. The outcomes of this first study show both the appropriateness of the current capabilities and the required improvements of our laser-driven proton source for in vivo biological experiments, in particular the need for accurate, spatially resolved single bunch dosimetry and image guidance.


Assuntos
Aceleração , Embrião não Mamífero/efeitos da radiação , Lasers , Prótons , Radiobiologia/métodos , Peixe-Zebra/embriologia , Animais , Estudos de Viabilidade
10.
Int J Radiat Biol ; 96(3): 297-323, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31852363

RESUMO

Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.


Assuntos
Neoplasias Induzidas por Radiação/diagnóstico , Radiação Ionizante , Transporte Ativo do Núcleo Celular , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carbono/metabolismo , Ciclo Celular , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Neoplasias/radioterapia , Estresse Oxidativo , Oxigênio/metabolismo , Lesões por Radiação , Proteção Radiológica , Tolerância a Radiação , Radioterapia , Processos Estocásticos
11.
J Cell Sci ; 132(19)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31492757

RESUMO

Nucleoli have attracted interest for their role as cellular stress sensors and as potential targets for cancer treatment. The effect of DNA double-strand breaks (DSBs) in nucleoli on rRNA transcription and nucleolar organisation appears to depend on the agent used to introduce DSBs, DSB frequency and the presence (or not) of DSBs outside the nucleoli. To address the controversy, we targeted nucleoli with carbon ions at the ion microbeam SNAKE. Localized ion irradiation with 1-100 carbon ions per point (about 0.3-30 Gy per nucleus) did not lead to overall reduced ribonucleotide incorporation in the targeted nucleolus or other nucleoli of the same cell. However, both 5-ethynyluridine incorporation and Parp1 protein levels were locally decreased at the damaged nucleolar chromatin regions marked by γH2AX, suggesting localized inhibition of rRNA transcription. This locally restricted transcriptional inhibition was not accompanied by nucleolar segregation, a structural reorganisation observed after inhibition of rRNA transcription by treatment with actinomycin D or UV irradiation. The presented data indicate that even multiple complex DSBs do not lead to a pan-nucleolar response if they affect only a subnucleolar region.


Assuntos
Nucléolo Celular/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Ribossômico/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Ribossômico/genética , Humanos , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Transcrição Gênica/genética
12.
Mutat Res ; 816-818: 111675, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31302572

RESUMO

The accumulation and spatial distribution of 53BP1, BRCA1 and Rad51, key proteins in DNA double-strand break (DSB) repair, was investigated with high temporal resolution over a time span of 24 h, using STED nanoscopy. DNA lesions were induced by irradiation with high-LET (linear energy transfer) α-particles. We show that 53BP1 IRIF formation occurs quickly in almost all cells and after about 6 h the fraction of 53BP1 IRIF positive cells slowly declines. Against the expectations BRCA1 and Rad51 IRIF formation is only shortly delayed but with the maximum of cells showing foci after 6 and 8 h after irradiation. At this stage, almost all IRIF in a given Rad51-positive cell show Rad51 accumulation, suggesting that repair via homologous recombination is attempted at almost all residual DSB sites. The frequency of BRCA1 IRIF positive cells increases much earlier and remains high after Rad51 positive cells start to decline, supporting models claiming that functional roles of BRCA1 change over time. Correlation analysis showed a high degree of correlation of Rad51 with BRCA1, while the exclusion of 53BP1 from the actual resection-zone is demonstrated by anti-correlation of Rad51 and 53BP1. Interestingly, these correlation and anti-correlation patterns exhibit complementary temporal variation.


Assuntos
Proteína BRCA1/genética , Reparo do DNA/genética , DNA/genética , Rad51 Recombinase/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Células HeLa , Recombinação Homóloga/genética , Humanos
13.
Int J Radiat Biol ; 95(4): 452-479, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29932783

RESUMO

PURPOSE: The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS: Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION: The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.


Assuntos
Dieta , Células-Tronco Hematopoéticas/efeitos da radiação , Leucemia Induzida por Radiação/etiologia , Animais , Antioxidantes , Autofagia , Diferenciação Celular , Epigênese Genética , Microbioma Gastrointestinal , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
15.
Sci Rep ; 7: 40616, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094292

RESUMO

The spatial distribution of DSB repair factors γH2AX, 53BP1 and Rad51 in ionizing radiation induced foci (IRIF) in HeLa cells using super resolution STED nanoscopy after low and high linear energy transfer (LET) irradiation was investigated. 53BP1 and γH2AX form IRIF with same mean size of (540 ± 40) nm after high LET irradiation while the size after low LET irradiation is significantly smaller. The IRIF of both repair factors show nanostructures with partial anti-correlation. These structures are related to domains formed within the chromatin territories marked by γH2AX while 53BP1 is mainly situated in the perichromatin region. The nanostructures have a mean size of (129 ± 6) nm and are found to be irrespective of the applied LET and the labelled damage marker. In contrast, Rad51 shows no nanostructure and a mean size of (143 ± 13) nm independent of LET. Although Rad51 is surrounded by 53BP1 it strongly anti-correlates meaning an exclusion of 53BP1 next to DSB when decision for homologous DSB repair happened.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Rad51 Recombinase/metabolismo , Radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Imunofluorescência , Células HeLa , Humanos , Nanoestruturas
16.
Cancer Lett ; 386: 87-99, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867017

RESUMO

Radio (chemo) therapy is a crucial treatment modality for head and neck squamous cell carcinoma (HNSCC), but relapse is frequent, and the underlying mechanisms remain largely elusive. Therefore, novel biomarkers are urgently needed. Previously, we identified gains on 16q23-24 to be associated with amplification of the Fanconi anemia A (FancA) gene and to correlate with reduced progression-free survival after radiotherapy. Here, we analyzed the effects of FancA on radiation sensitivity in vitro, characterized the underlying mechanisms, and evaluated their clinical relevance. Silencing of FancA expression in HNSCC cell lines with genomic gains on 16q23-24 resulted in significantly impaired clonogenic survival upon irradiation. Conversely, overexpression of FancA in immortalized keratinocytes conferred increased survival accompanied by improved DNA repair, reduced accumulation of chromosomal translocations, but no hyperactivation of the FA/BRCA-pathway. Downregulation of interferon signaling as identified by microarray analyses, enforced irradiation-induced senescence, and elevated production of the senescence-associated secretory phenotype (SASP) appeared to be candidate mechanisms contributing to FancA-mediated radioresistance. Data of the TCGA HNSCC cohort confirmed the association of gains on 16q24.3 with FancA overexpression and impaired overall survival. Importantly, transcriptomic alterations similar to those observed upon FancA overexpression in vitro strengthened the clinical relevance. Overall, FancA amplification and overexpression appear to be crucial for radiotherapeutic failure in HNSCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/radioterapia , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Amplificação de Genes , Neoplasias de Cabeça e Pescoço/radioterapia , Tolerância a Radiação/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Intervalo Livre de Doença , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genótipo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Estimativa de Kaplan-Meier , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Tempo , Transfecção , Falha de Tratamento , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
PLoS One ; 11(6): e0156599, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27253695

RESUMO

Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Tolerância a Radiação , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Acetilação , Proliferação de Células/efeitos da radiação , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Técnicas de Silenciamento de Genes , Genes Reporter , Células HeLa , Humanos , Lisina/metabolismo , Células MCF-7 , Plasmídeos/metabolismo , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante
18.
Oncotarget ; 7(28): 43199-43219, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27259245

RESUMO

The chaperone heat shock protein 90 (HSP90) crucially supports the maturation, folding, and stability of a variety of client proteins which are of pivotal importance for the survival and proliferation of cancer cells. Consequently, targeting of HSP90 has emerged as an attractive strategy of anti-cancer therapy, and it appears to be particularly effective in the context of molecular sensitization towards radiotherapy as has been proven in preclinical models of different cancer entities. However, so far the clinical translation has largely been hampered by suboptimal pharmacological properties and serious hepatotoxicity of first- and second-generation HSP90 inhibitors. Here, we report on NW457, a novel radicicol-derived member of the pochoxime family with reduced hepatotoxicity, how it inhibits the DNA damage response and how it synergizes with ionizing irradiation to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer in vitro and in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Quimiorradioterapia/métodos , Neoplasias Colorretais/terapia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Macrolídeos/uso terapêutico , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/química , Apoptose/efeitos da radiação , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Feminino , Células HCT116 , Hepatócitos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Testes de Função Hepática , Macrolídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Cultura Primária de Células , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , Radiossensibilizantes/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
PLoS One ; 11(3): e0151041, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26950694

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Anticorpos de Domínio Único/imunologia , Ressonância de Plasmônio de Superfície/métodos , Especificidade de Anticorpos , Linhagem Celular , Sobrevivência Celular , DNA/genética , DNA/metabolismo , Epitopos/imunologia , Humanos , Imunoprecipitação , Imagem Molecular , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/imunologia , Estrutura Terciária de Proteína , Transporte Proteico
20.
Oncotarget ; 7(9): 9732-41, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26799421

RESUMO

There is a need to develop new, more efficient therapies for head and neck cancer (HNSCC) patients. It is currently unclear whether defects in DNA repair genes play a role in HNSCCs' resistance to therapy. PARP1 inhibitors (PARPi) were found to be "synthetic lethal" in cancers deficient in BRCA1/2 with impaired homologous recombination. Since tumors rarely have these particular mutations, there is considerable interest in finding alternative determinants of PARPi sensitivity. Effectiveness of combined irradiation and PARPi olaparib was evaluated in ten HNSCC cell lines, subdivided into HR-proficient and HR-deficient cell lines using a GFP-based reporter assay. Both groups were equally sensitive to PARPi alone. Combined treatment revealed stronger synergistic interactions in the HR-deficient group. Because HR is mainly active in S-Phase, replication processes were analyzed. A stronger impact of treatment on replication processes (p = 0.04) and an increased number of radial chromosomes (p = 0.003) were observed in the HR-deficient group. We could show that radiosensitization by inhibition of PARP1 strongly correlates with HR competence in a replication-dependent manner. Our observations indicate that PARP1 inhibitors are promising candidates for enhancing the therapeutic ratio achieved by radiotherapy via disabling DNA replication processes in HR-deficient HNSCCs.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Replicação do DNA/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Recombinação Homóloga/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Reparo do DNA/genética , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA