Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 76: 101780, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482187

RESUMO

OBJECTIVES: Nuclear receptor interacting protein 1 (NRIP1) suppresses energy expenditure via repression of nuclear receptors, and its depletion markedly elevates uncoupled respiration in mouse and human adipocytes. We tested whether NRIP1 deficient adipocytes implanted into obese mice would enhance whole body metabolism. Since ß-adrenergic signaling through cAMP strongly promotes adipocyte thermogenesis, we tested whether the effects of NRIP1 knock-out (NRIP1KO) require the cAMP pathway. METHODS: NRIP1KO adipocytes were implanted in recipient high-fat diet (HFD) fed mice and metabolic cage studies conducted. The Nrip1 gene was disrupted by CRISPR in primary preadipocytes isolated from control vs adipose selective GsαKO (cAdGsαKO) mice prior to differentiation to adipocytes. Protein kinase A inhibitor was also used. RESULTS: Implanting NRIP1KO adipocytes into HFD fed mice enhanced whole-body glucose tolerance by increasing insulin sensitivity, reducing adiposity, and enhancing energy expenditure in the recipients. NRIP1 depletion in both control and GsαKO adipocytes was equally effective in upregulating uncoupling protein 1 (UCP1) and adipocyte beiging, while ß-adrenergic signaling by CL 316,243 was abolished in GsαKO adipocytes. Combining NRIP1KO with CL 316,243 treatment synergistically increased Ucp1 gene expression and increased the adipocyte subpopulation responsive to beiging. Estrogen-related receptor α (ERRα) was dispensable for UCP1 upregulation by NRIPKO. CONCLUSIONS: The thermogenic effect of NRIP1 depletion in adipocytes causes systemic enhancement of energy expenditure when such adipocytes are implanted into obese mice. Furthermore, NRIP1KO acts independently but cooperatively with the cAMP pathway in mediating its effect on adipocyte beiging.


Assuntos
Adipócitos , Transdução de Sinais , Camundongos , Humanos , Animais , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Camundongos Obesos , Adipócitos/metabolismo , Obesidade/metabolismo , Termogênese/genética
2.
J Biol Chem ; 299(8): 105045, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451484

RESUMO

Glucagon signaling is essential for maintaining normoglycemia in mammals. The arrestin fold superfamily of proteins controls the trafficking, turnover, and signaling of transmembrane receptors as well as other intracellular signaling functions. Further investigation is needed to understand the in vivo functions of the arrestin domain-containing 4 (ARRDC4) protein family member and whether it is involved in mammalian glucose metabolism. Here, we show that mice with a global deletion of the ARRDC4 protein have impaired glucagon responses and gluconeogenesis at a systemic and molecular level. Mice lacking ARRDC4 exhibited lower glucose levels after fasting and could not suppress gluconeogenesis at the refed state. We also show that ARRDC4 coimmunoprecipitates with the glucagon receptor, and ARRDC4 expression is suppressed by insulin. These results define ARRDC4 as a critical regulator of glucagon signaling and glucose homeostasis and reveal a novel intersection of insulin and glucagon pathways in the liver.


Assuntos
Glucagon , Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Fígado , Animais , Camundongos , Glucagon/metabolismo , Gluconeogênese , Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Adv Sci (Weinh) ; 10(18): e2300416, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088778

RESUMO

The liver plays a central role in regulating glucose and lipid metabolism. Aberrant insulin action in the liver is a major driver of selective insulin resistance, in which insulin fails to suppress glucose production but continues to activate lipogenesis in the liver, resulting in hyperglycemia and hypertriglyceridemia. The underlying mechanisms of selective insulin resistance are not fully understood. Here It is shown that hepatic membrane phospholipid composition controlled by lysophosphatidylcholine acyltransferase 3 (LPCAT3) regulates insulin signaling and systemic glucose and lipid metabolism. Hyperinsulinemia induced by high-fat diet (HFD) feeding augments hepatic Lpcat3 expression and membrane unsaturation. Loss of Lpcat3 in the liver improves insulin resistance and blunts lipogenesis in both HFD-fed and genetic ob/ob mouse models. Mechanistically, Lpcat3 deficiency directly facilitates insulin receptor endocytosis, signal transduction, and hepatic glucose production suppression and indirectly enhances fibroblast growth factor 21 (FGF21) secretion, energy expenditure, and glucose uptake in adipose tissue. These findings identify hepatic LPCAT3 and membrane phospholipid composition as a novel regulator of insulin sensitivity and provide insights into the pathogenesis of selective insulin resistance.


Assuntos
Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/genética , Fosfolipídeos/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Insulina/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
4.
Nat Commun ; 13(1): 7633, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496438

RESUMO

The signaling mechanisms underlying adipose thermogenesis have not been fully elucidated. Particularly, the involvement of adipokines that are selectively expressed in brown adipose tissue (BAT) and beige adipocytes remains to be investigated. Here we show that a previously uncharacterized adipokine (UPF0687 protein / human C20orf27 homolog) we named as Adissp (Adipose-secreted signaling protein) is a key regulator for white adipose tissue (WAT) thermogenesis and glucose homeostasis. Adissp expression is adipose-specific and highly BAT-enriched, and its secretion is stimulated by ß3-adrenergic activation. Gain-of-functional studies collectively showed that secreted Adissp promotes WAT thermogenesis, improves glucose homeostasis, and protects against obesity. Adipose-specific Adissp knockout mice are defective in WAT browning, and are susceptible to high fat diet-induced obesity and hyperglycemia. Mechanistically, Adissp binds to a putative receptor on adipocyte surface and activates protein kinase A independently of ß-adrenergic signaling. These results establish BAT-enriched Adissp as a major upstream signaling component in thermogenesis and offer a potential avenue for the treatment of obesity and diabetes.


Assuntos
Adipocinas , Tecido Adiposo Marrom , Camundongos , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Termogênese , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Adrenérgicos/metabolismo , Adipócitos Marrons/metabolismo , Metabolismo Energético
5.
Front Endocrinol (Lausanne) ; 13: 1010806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387852

RESUMO

Estrogens protect against weight gain and metabolic disruption in women and female rodents. Aberrations in the gut microbiota composition are linked to obesity and metabolic disorders. Furthermore, estrogen-mediated protection against diet-induced metabolic disruption is associated with modifications in gut microbiota. In this study, we tested if estradiol (E2)-mediated protection against obesity and metabolic disorders in female mice is dependent on gut microbiota. Specifically, we tested if fecal microbiota transplantation (FMT) from E2-treated lean female mice, supplemented with or without Akkermansia muciniphila, prevented high fat diet (HFD)-induced body weight gain, fat mass gain, and hyperglycemia in female recipients. FMT from, and cohousing with, E2-treated lean donors was not sufficient to transfer the metabolic benefits to the E2-deficient female recipients. Moreover, FMT from lean donors supplemented with A. muciniphila exacerbated HFD-induced hyperglycemia in E2-deficient recipients, suggesting its detrimental effect on the metabolic health of E2-deficient female rodents fed a HFD. Given that A. muciniphila attenuates HFD-induced metabolic insults in males, the present findings suggest a sex difference in the impact of this microbe on metabolic health.


Assuntos
Dieta Hiperlipídica , Hiperglicemia , Feminino , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Akkermansia , Transplante de Microbiota Fecal , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/terapia , Obesidade/metabolismo , Aumento de Peso
6.
J Biol Chem ; 298(10): 102401, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988648

RESUMO

Hepatic steatosis associated with high-fat diet, obesity, and type 2 diabetes is thought to be the major driver of severe liver inflammation, fibrosis, and cirrhosis. Cytosolic acetyl CoA (AcCoA), a central metabolite and substrate for de novo lipogenesis (DNL), is produced from citrate by ATP-citrate lyase (ACLY) and from acetate through AcCoA synthase short chain family member 2 (ACSS2). However, the relative contributions of these two enzymes to hepatic AcCoA pools and DNL rates in response to high-fat feeding are unknown. We report here that hepatocyte-selective depletion of either ACSS2 or ACLY caused similar 50% decreases in liver AcCoA levels in obese mice, showing that both pathways contribute to the generation of this DNL substrate. Unexpectedly however, the hepatocyte ACLY depletion in obese mice paradoxically increased total DNL flux measured by D2O incorporation into palmitate, whereas in contrast, ACSS2 depletion had no effect. The increase in liver DNL upon ACLY depletion was associated with increased expression of nuclear sterol regulatory element-binding protein 1c and of its target DNL enzymes. This upregulated DNL enzyme expression explains the increased rate of palmitate synthesis in ACLY-depleted livers. Furthermore, this increased flux through DNL may also contribute to the observed depletion of AcCoA levels because of its increased conversion to malonyl CoA and palmitate. Together, these data indicate that in fat diet-fed obese mice, hepatic DNL is not limited by its immediate substrates AcCoA or malonyl CoA but rather by activities of DNL enzymes.


Assuntos
Diabetes Mellitus Tipo 2 , Lipogênese , Fígado , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Camundongos , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Malonil Coenzima A/metabolismo , Camundongos Obesos , Palmitatos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Nat Commun ; 12(1): 6931, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836963

RESUMO

Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.


Assuntos
Adipócitos Marrons/transplante , Sistemas CRISPR-Cas/genética , Intolerância à Glucose/terapia , Obesidade/terapia , Termogênese/genética , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Células-Tronco Adultas/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Edição de Genes/métodos , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Proteína 1 de Interação com Receptor Nuclear/genética , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Obesidade/complicações , Obesidade/metabolismo , RNA Guia de Cinetoplastídeos/genética , Gordura Subcutânea/citologia
8.
Metabolites ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34436440

RESUMO

A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.

9.
Physiol Rep ; 9(6): e14811, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33769706

RESUMO

Increasing evidence shows a potential link between the perinatal nutrient environment and metabolic outcome in offspring. Here, we investigated the effects of maternal feeding of a high-fat diet (HFD) during the perinatal period on hepatic metabolism and inflammation in male offspring mice at weaning and in early adulthood. Female C57BL/6 J mice were fed HFD or normal chow (NC) for 4 weeks before mating and during pregnancy and lactation. The male offspring mice were weaned onto an NC diet, and metabolic and molecular experiments were performed in early adulthood. At postnatal day 21, male offspring mice from HFD-fed dams (Off-HFD) showed significant increases in whole body fat mass and fasting levels of glucose, insulin, and cholesterol compared to male offspring mice from NC-fed dams (Off-NC). The RT-qPCR analysis showed two- to fivefold increases in hepatic inflammatory markers (MCP-1, IL-1ß, and F4/80) in Off-HFD mice. Hepatic expression of G6Pase and PEPCK was elevated by fivefold in the Off-HFD mice compared to the Off-NC mice. Hepatic expression of GLUT4, IRS-1, and PDK4, as well as lipid metabolic genes, CD36, SREBP1c, and SCD1 were increased in the Off-HFD mice compared to the Off-NC mice. In contrast, CPT1a mRNA levels were reduced by 60% in the Off-HFD mice. At postnatal day 70, despite comparable body weights to the Off-NC mice, Off-HFD mice developed hepatic inflammation with increased expression of MCP-1, CD68, F4/80, and CD36 compared to the Off-NC mice. Despite normal body weight, Off-HFD mice developed insulin resistance with defects in hepatic insulin action and insulin-stimulated glucose uptake in skeletal muscle and brown fat, and these metabolic effects were associated with hepatic inflammation in Off-HFD mice. Our findings indicate hidden, lasting effects of maternal exposure to HFD during pregnancy and lactation on metabolic homeostasis of normal weight offspring mice.


Assuntos
Dieta Hiperlipídica , Inflamação/metabolismo , Resistência à Insulina , Hepatopatias/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Feminino , Expressão Gênica , Inflamação/complicações , Lactação , Hepatopatias/complicações , Masculino , Camundongos Endogâmicos C57BL , Gravidez
10.
Mol Metab ; 44: 101121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33220491

RESUMO

OBJECTIVE: Members of the insulin/insulin-like growth factor (IGF) superfamily are well conserved across the evolutionary tree. We recently showed that four viruses in the Iridoviridae family possess genes that encode proteins highly homologous to human insulin/IGF-1. Using chemically synthesized single-chain (sc), i.e., IGF-1-like, forms of the viral insulin/IGF-1-like peptides (VILPs), we previously showed that they can stimulate human receptors. Because these peptides possess potential cleavage sites to form double chain (dc), i.e., more insulin-like, VILPs, in this study, we have characterized dc forms of VILPs for Grouper iridovirus (GIV), Singapore grouper iridovirus (SGIV) and Lymphocystis disease virus-1 (LCDV-1) for the first time. METHODS: The dcVILPs were chemically synthesized. Using murine fibroblast cell lines overexpressing insulin receptor (IR-A or IR-B) or IGF1R, we first determined the binding affinity of dcVILPs to the receptors and characterized post-receptor signaling. Further, we used C57BL/6J mice to study the effect of dcVILPs on lowering blood glucose. We designed a 3-h dcVILP in vivo infusion experiment to determine the glucose uptake in different tissues. RESULTS: GIV and SGIV dcVILPs bind to both isoforms of human insulin receptor (IR-A and IR-B) and to the IGF1R, and for the latter, show higher affinity than human insulin. These dcVILPs stimulate IR and IGF1R phosphorylation and post-receptor signaling in vitro and in vivo. Both GIV and SGIV dcVILPs stimulate glucose uptake in mice. In vivo infusion experiments revealed that while insulin (0.015 nmol/kg/min) and GIV dcVILP (0.75 nmol/kg/min) stimulated a comparable glucose uptake in heart and skeletal muscle and brown adipose tissue, GIV dcVILP stimulated 2-fold higher glucose uptake in white adipose tissue (WAT) compared to insulin. This was associated with increased Akt phosphorylation and glucose transporter type 4 (GLUT4) gene expression compared to insulin in WAT. CONCLUSIONS: Our results show that GIV and SGIV dcVILPs are active members of the insulin superfamily with unique characteristics. Elucidating the mechanism of tissue specificity for GIV dcVILP will help us to better understand insulin action, design new analogs that specifically target the tissues and provide new insights into their potential role in disease.


Assuntos
Tecido Adiposo Branco/metabolismo , Insulina/genética , Insulina/metabolismo , Iridovirus/genética , Tecido Adiposo Marrom/metabolismo , Animais , Antígenos CD , Linhagem Celular , Glucose/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Insulinas/metabolismo , Iridoviridae/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais
11.
iScience ; 23(9): 101521, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32927265

RESUMO

Increased consumption of fats and added sugars has been associated with an increase in metabolic syndromes. Here we show that mice chronically fed an energy-rich diet (ERD) with high fat and moderate sucrose have enhanced the absorption of a gastrointestinal fructose load, and this required expression of the arrestin domain protein Txnip in the intestinal epithelial cells. ERD feeding induced gene and protein expression of Glut5, and this required the expression of Txnip. Furthermore, Txnip interacted with Rab11a, a small GTPase that facilitates the apical localization of Glut5. We also demonstrate that ERD promoted Txnip/Glut5 complexes in the apical intestinal epithelial cell. Our findings demonstrate that ERD facilitates fructose absorption through a Txnip-dependent mechanism in the intestinal epithelial cell, suggesting that increased fructose absorption could potentially provide a mechanism for worsening of metabolic syndromes in the setting of a chronic ERD.

12.
Elife ; 92020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356724

RESUMO

Maintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary sources contributing to variability. Energy metabolism is measured by powerful and sensitive indirect calorimetry devices. Analysis of nearly 10,000 wild-type mice from two large-scale experiments revealed that the largest variation in energy expenditure is due to body composition, ambient temperature, and institutional site of experimentation. We also analyze variation in 2329 knockout strains and establish a reference for the magnitude of metabolic changes. Based on these findings, we provide suggestions for how best to design and conduct energy balance experiments in rodents. These recommendations will move us closer to the goal of a centralized physiological repository to foster transparency, rigor and reproducibility in metabolic physiology experimentation.


Maintaining a healthy weight requires the body to balance energy intake and expenditure. The body converts food to energy through a process called energy metabolism. Genetic and environmental factors can affect energy metabolism and energy balance contributing to conditions like obesity. To better understand metabolism, scientists often study mice in laboratories, but mice from different laboratories appear to convert food to energy at different rates. This makes it hard to determine what is 'normal' for mouse metabolism. These discrepancies could be due to small differences between how mice are kept in different laboratories. For example, the temperatures of the mouse cages or how active the mice are might differ depending on the laboratory. Identifying the effects of such differences is essential, but it requires looking at data from hundreds of mice. Corrigan et al. examined data from more than 30,000 mice at laboratories around the world to show that room temperatures and the amount of muscle and fat in a mouse's body have the biggest influence on energy balance. These two factors affected the metabolism of both typical mice and mice with mutations that affect their energy balance. These results suggest that it is important for scientists to report factors like room temperatures, the body make-up of the mice, or the animals' activity levels in metabolism studies. This can help scientists compare results and repeat experiments, which could speed up research into mouse metabolism. Corrigan et al. also found that other unknown factors also affect mouse metabolism in different laboratories. Further studies are needed to identify these factors.


Assuntos
Adiposidade , Big Data , Metabolismo Energético , Obesidade/metabolismo , Adiposidade/genética , Ração Animal , Criação de Animais Domésticos , Animais , Calorimetria Indireta , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Fenótipo , Temperatura
13.
Cell Rep ; 28(3): 773-791.e7, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315054

RESUMO

Exquisite regulation of energy homeostasis protects from nutrient deprivation but causes metabolic dysfunction upon nutrient excess. In human and murine adipose tissue, the accumulation of ligands of the receptor for advanced glycation end products (RAGE) accompanies obesity, implicating this receptor in energy metabolism. Here, we demonstrate that mice bearing global- or adipocyte-specific deletion of Ager, the gene encoding RAGE, display superior metabolic recovery after fasting, a cold challenge, or high-fat feeding. The RAGE-dependent mechanisms were traced to suppression of protein kinase A (PKA)-mediated phosphorylation of its key targets, hormone-sensitive lipase and p38 mitogen-activated protein kinase, upon ß-adrenergic receptor stimulation-processes that dampen the expression and activity of uncoupling protein 1 (UCP1) and thermogenic programs. This work identifies the innate role of RAGE as a key node in the immunometabolic networks that control responses to nutrient supply and cold challenges, and it unveils opportunities to harness energy expenditure in environmental and metabolic stress.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo , Adipócitos/enzimologia , Tecido Adiposo/enzimologia , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo Energético , Jejum/metabolismo , Jejum/fisiologia , Humanos , Lipólise/genética , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Termogênese/genética , Transplante Homólogo , Proteína Desacopladora 1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Biochem Biophys Res Commun ; 508(1): 87-91, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470572

RESUMO

Stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme that adds a double bond at the delta 9 position of stearate (C18: 0) and palmitate (C16: 0), has been proven to be important in the development of obesity. Mice with skin-specific deficiency of SCD1 (SKO) display increased whole-body energy expenditure, which is protective against adiposity from a high-fat diet because it improves glucose clearance, insulin sensitivity, and hepatic steatosis. Of note, these mice also display elevated levels of the "pro-inflammatory" plasma interleukin-6 (IL-6). In whole skin of SKO mice, IL-6 mRNA levels are increased, and protein expression is evident in hair follicle cells and in keratinocytes. Recently, the well-known role of IL-6 in causing white adipose tissue lipolysis has been linked to indirectly activating the gluconeogenic enzyme pyruvate carboxylase 1 in the liver, thereby increasing hepatic glucose production. In this study, we suggest that skin-derived IL-6 leads to white adipose tissue lipolysis, which contributes to the lean phenotype of SKO mice without the incidence of meta-inflammation that is associated with IL-6 signaling.


Assuntos
Interleucina-6/metabolismo , Pele/metabolismo , Estearoil-CoA Dessaturase/deficiência , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Gluconeogênese , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Interleucina-6/genética , Queratinócitos/metabolismo , Lipólise , Fígado/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/citologia , Estearoil-CoA Dessaturase/genética , Magreza/genética , Magreza/metabolismo , Distribuição Tecidual
15.
J Biol Chem ; 293(44): 17291-17305, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190322

RESUMO

RNA-guided, engineered nucleases derived from the prokaryotic adaptive immune system CRISPR-Cas represent a powerful platform for gene deletion and editing. When used as a therapeutic approach, direct delivery of Cas9 protein and single-guide RNA (sgRNA) could circumvent the safety issues associated with plasmid delivery and therefore represents an attractive tool for precision genome engineering. Gene deletion or editing in adipose tissue to enhance its energy expenditure, fatty acid oxidation, and secretion of bioactive factors through a "browning" process presents a potential therapeutic strategy to alleviate metabolic disease. Here, we developed "CRISPR-delivery particles," denoted CriPs, composed of nano-size complexes of Cas9 protein and sgRNA that are coated with an amphipathic peptide called Endo-Porter that mediates entry into cells. Efficient CRISPR-Cas9-mediated gene deletion of ectopically expressed GFP by CriPs was achieved in multiple cell types, including a macrophage cell line, primary macrophages, and primary pre-adipocytes. Significant GFP loss was also observed in peritoneal exudate cells with minimum systemic toxicity in GFP-expressing mice following intraperitoneal injection of CriPs containing Gfp-targeting sgRNA. Furthermore, disruption of a nuclear co-repressor of catabolism, the Nrip1 gene, in white adipocytes by CriPs enhanced adipocyte browning with a marked increase of uncoupling protein 1 (UCP1) expression. Of note, the CriP-mediated Nrip1 deletion did not produce detectable off-target effects. We conclude that CriPs offer an effective Cas9 and sgRNA delivery system for ablating targeted gene products in cultured cells and in vivo, providing a potential therapeutic strategy for metabolic disease.


Assuntos
Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Marcação de Genes/métodos , Proteína 1 de Interação com Receptor Nuclear/genética , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Genes Reporter , Humanos , Camundongos Endogâmicos C57BL , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
Am J Physiol Endocrinol Metab ; 315(3): E340-E356, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533741

RESUMO

Macrophages are phagocytes that play important roles in health and diseases. Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) converts cellular cholesterol to cholesteryl esters and is expressed in many cell types. Unlike global Acat1 knockout (KO), myeloid-specific Acat1 KO ( Acat1-) does not cause overt abnormalities in mice. Here, we performed analyses in age- and sex-matched Acat1-M/-M and wild-type mice on chow or Western diet and discovered that Acat1-M/-M mice exhibit resistance to Western diet-induced obesity. On both chow and Western diets, Acat1-M/-M mice display decreased adipocyte size and increased insulin sensitivity. When fed with Western diet, Acat1-M/-M mice contain fewer infiltrating macrophages in white adipose tissue (WAT), with significantly diminished inflammatory phenotype. Without Acat1, the Ly6Chi monocytes express reduced levels of integrin-ß1, which plays a key role in the interaction between monocytes and the inflamed endothelium. Adoptive transfer experiment showed that the appearance of leukocytes from Acat1-M/-M mice to the inflamed WAT of wild-type mice is significantly diminished. Under Western diet, Acat1-M/-M causes suppression of multiple proinflammatory genes in WAT. Cell culture experiments show that in RAW 264.7 macrophages, inhibiting ACAT1 with a small-molecule ACAT1-specific inhibitor reduces inflammatory responses to lipopolysaccharide. We conclude that under Western diet, blocking ACAT1 in macrophages attenuates inflammation in WAT. Other results show that Acat1-M/-M does not compromise antiviral immune response. Our work reveals that blocking ACAT1 suppresses diet-induced obesity in part by slowing down monocyte infiltration to WAT as well as by reducing the inflammatory responses of adipose tissue macrophages.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/fisiologia , Dieta , Inflamação/genética , Inflamação/patologia , Resistência à Insulina/genética , Macrófagos/patologia , Obesidade/genética , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/fisiologia , Adipócitos/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Tamanho Celular , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Inflamação/imunologia , Integrina beta1/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Células RAW 264.7
17.
FASEB J ; 32(4): 2292-2304, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29242277

RESUMO

Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78-/-) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78-/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78-/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78-/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.


Assuntos
Proteínas de Choque Térmico/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Obesidade/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Chaperona BiP do Retículo Endoplasmático , Glucose/metabolismo , Proteínas de Choque Térmico/genética , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Obesidade/etiologia , Resposta a Proteínas não Dobradas
18.
FASEB J ; 31(2): 701-710, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27811060

RESUMO

Altered energy balance and insulin resistance are important characteristics of aging. Skeletal muscle is a major site of glucose disposal, and the role of aging-associated inflammation in skeletal muscle insulin resistance remains unclear. To investigate, we examined glucose metabolism in 18-mo-old transgenic mice with muscle-specific overexpression of IL-10 (MIL10) and in wild-type mice during hyperinsulinemic-euglycemic clamping. Despite similar fat mass and energy balance, MIL10 mice were protected from aging-associated insulin resistance with significant increases in glucose infusion rates, whole-body glucose turnover, and skeletal muscle glucose uptake (∼60%; P < 0.05), as compared to age-matched WT mice. This protective effect was associated with decreased muscle inflammation, but no changes in adipose tissue inflammation in aging MIL10 mice. These results demonstrate the importance of skeletal muscle inflammation in aging-mediated insulin resistance, and our findings further implicate a potential therapeutic role of anti-inflammatory cytokine in the treatment of aging-mediated insulin resistance.-Dagdeviren, S., Jung, D. Y., Friedline, R. H., Noh, H. L., Kim, J. H., Patel, P. R., Tsitsilianos, N., Inashima, K., Tran, D. A., Hu, X., Loubato, M. M., Craige, S. M., Kwon, J. Y., Lee, K. W., Kim, J. K. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle.


Assuntos
Envelhecimento/fisiologia , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Interleucina-10/metabolismo , Músculo Esquelético/metabolismo , Animais , Creatina Quinase Forma MM , Metabolismo Energético , Interleucina-10/genética , Masculino , Camundongos , Camundongos Transgênicos
19.
Mol Cell Biol ; 36(23): 2956-2966, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27644327

RESUMO

Skeletal muscle insulin resistance is a major characteristic of obesity and type 2 diabetes. Although obesity-mediated inflammation is causally associated with insulin resistance, the underlying mechanism is unclear. Here, we examined the effects of chronic obesity in mice with muscle-specific overexpression of interleukin-10 (MIL10). After 16 weeks of a high-fat diet (HFD), MIL10 mice became markedly obese but showed improved insulin action compared to that of wild-type mice, which was largely due to increased glucose metabolism and reduced inflammation in skeletal muscle. Since leptin regulates inflammation, the beneficial effects of interleukin-10 (IL-10) were further examined in leptin-deficient ob/ob mice. Muscle-specific overexpression of IL-10 in ob/ob mice (MCK-IL10ob/ob) did not affect spontaneous obesity, but MCK-IL10ob/ob mice showed increased glucose turnover compared to that in ob/ob mice. Last, mice with muscle-specific ablation of IL-10 receptor (M-IL10R-/-) were generated to determine whether IL-10 signaling in skeletal muscle is involved in IL-10 effects on glucose metabolism. After an HFD, M-IL10R-/- mice developed insulin resistance with reduced glucose metabolism compared to that in wild-type mice. Overall, these results demonstrate IL-10 effects to attenuate obesity-mediated inflammation and improve insulin sensitivity in skeletal muscle, and our findings implicate a potential therapeutic role of anti-inflammatory cytokines in treating insulin resistance and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Resistência à Insulina , Interleucina-10/genética , Leptina/genética , Músculo Esquelético/imunologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Glucose/metabolismo , Camundongos , Obesidade , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Transdução de Sinais
20.
FASEB J ; 30(3): 1328-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26644351

RESUMO

Obesity is characterized by a dysregulated immune system, which may causally associate with insulin resistance and type 2 diabetes. Despite widespread use of nonobese diabetic (NOD) mice, NOD with severe combined immunodeficiency (scid) mutation (SCID) mice, and SCID bearing a null mutation in the IL-2 common γ chain receptor (NSG) mice as animal models of human diseases including type 1 diabetes, the underlying metabolic effects of a genetically altered immune system are poorly understood. For this, we performed a comprehensive metabolic characterization of these mice fed chow or after 6 wk of a high-fat diet. We found that NOD mice had ∼50% less fat mass and were 2-fold more insulin sensitive, as measured by hyperinsulinemic-euglycemic clamp, than C57BL/6 wild-type mice. SCID mice were also more insulin sensitive with increased muscle glucose metabolism and resistant to diet-induced obesity due to increased energy expenditure (∼10%) and physical activity (∼40%) as measured by metabolic cages. NSG mice were completely protected from diet-induced obesity and insulin resistance with significant increases in glucose metabolism in peripheral organs. Our findings demonstrate an important role of genetic background, lymphocytes, and cytokine signaling in diet-induced obesity and insulin resistance.


Assuntos
Resistência à Insulina/fisiologia , Interleucina-2/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos NOD/metabolismo , Obesidade/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Metabolismo Energético/fisiologia , Glucose/metabolismo , Técnica Clamp de Glucose/métodos , Insulina/metabolismo , Linfócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Obesidade/fisiopatologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA