Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 6(9): e2335377, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37747733

RESUMO

Importance: Artificial intelligence (AI) has gained considerable attention in health care, yet concerns have been raised around appropriate methods and fairness. Current AI reporting guidelines do not provide a means of quantifying overall quality of AI research, limiting their ability to compare models addressing the same clinical question. Objective: To develop a tool (APPRAISE-AI) to evaluate the methodological and reporting quality of AI prediction models for clinical decision support. Design, Setting, and Participants: This quality improvement study evaluated AI studies in the model development, silent, and clinical trial phases using the APPRAISE-AI tool, a quantitative method for evaluating quality of AI studies across 6 domains: clinical relevance, data quality, methodological conduct, robustness of results, reporting quality, and reproducibility. These domains included 24 items with a maximum overall score of 100 points. Points were assigned to each item, with higher points indicating stronger methodological or reporting quality. The tool was applied to a systematic review on machine learning to estimate sepsis that included articles published until September 13, 2019. Data analysis was performed from September to December 2022. Main Outcomes and Measures: The primary outcomes were interrater and intrarater reliability and the correlation between APPRAISE-AI scores and expert scores, 3-year citation rate, number of Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) low risk-of-bias domains, and overall adherence to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement. Results: A total of 28 studies were included. Overall APPRAISE-AI scores ranged from 33 (low quality) to 67 (high quality). Most studies were moderate quality. The 5 lowest scoring items included source of data, sample size calculation, bias assessment, error analysis, and transparency. Overall APPRAISE-AI scores were associated with expert scores (Spearman ρ, 0.82; 95% CI, 0.64-0.91; P < .001), 3-year citation rate (Spearman ρ, 0.69; 95% CI, 0.43-0.85; P < .001), number of QUADAS-2 low risk-of-bias domains (Spearman ρ, 0.56; 95% CI, 0.24-0.77; P = .002), and adherence to the TRIPOD statement (Spearman ρ, 0.87; 95% CI, 0.73-0.94; P < .001). Intraclass correlation coefficient ranges for interrater and intrarater reliability were 0.74 to 1.00 for individual items, 0.81 to 0.99 for individual domains, and 0.91 to 0.98 for overall scores. Conclusions and Relevance: In this quality improvement study, APPRAISE-AI demonstrated strong interrater and intrarater reliability and correlated well with several study quality measures. This tool may provide a quantitative approach for investigators, reviewers, editors, and funding organizations to compare the research quality across AI studies for clinical decision support.


Assuntos
Inteligência Artificial , Sistemas de Apoio a Decisões Clínicas , Humanos , Reprodutibilidade dos Testes , Aprendizado de Máquina , Relevância Clínica
2.
PLOS Digit Health ; 1(10): e0000102, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36812599

RESUMO

The availability of large, deidentified health datasets has enabled significant innovation in using machine learning (ML) to better understand patients and their diseases. However, questions remain regarding the true privacy of this data, patient control over their data, and how we regulate data sharing in a way that that does not encumber progress or further potentiate biases for underrepresented populations. After reviewing the literature on potential reidentifications of patients in publicly available datasets, we argue that the cost-measured in terms of access to future medical innovations and clinical software-of slowing ML progress is too great to limit sharing data through large publicly available databases for concerns of imperfect data anonymization. This cost is especially great for developing countries where the barriers preventing inclusion in such databases will continue to rise, further excluding these populations and increasing existing biases that favor high-income countries. Preventing artificial intelligence's progress towards precision medicine and sliding back to clinical practice dogma may pose a larger threat than concerns of potential patient reidentification within publicly available datasets. While the risk to patient privacy should be minimized, we believe this risk will never be zero, and society has to determine an acceptable risk threshold below which data sharing can occur-for the benefit of a global medical knowledge system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA